Tungsten diselenide, WSe2, is attractive as a channel material for p-channel metal–oxide–semiconductor field effect transistors (PMOSFETs) using transition metal dichalcogenide (TMD) nanosheets for ultimate CMOS scaling. For practical applications, it is necessary to demonstrate good quality devices on as-grown, large-area chemical vapor deposition (CVD) grown TMD films, rather than on small, exfoliated flakes from bulk crystals, and without requiring transfers to secondary substrates. This article reports on the growth optimization of large-area WSe2 and efforts to achieve higher hole conduction, which is more challenging than electron conduction since most TMDs tend to be n-type due to defects. Achieving low contact resistance and high drive currents is vital, but the intrinsic defects within the grown material dominate the carrier mobilities and effectively make TMDs more n-type due to chalcogen vacancies in devices fabricated at high temperatures. We have, therefore, developed salt-assisted growth strategies at different growth temperatures using atmospheric pressure CVD (APCVD). Furthermore, we identified optimal APCVD growth and PMOSFET fabrication recipes to achieve high hole conduction. With growth and fabrication optimization, we can achieve drive currents of 10 μA/μm in back-gated PMOSFETs at Vd = −2 V in as-grown WSe2, akin to their exfoliation-based counterparts. We also have seen evidence of both hole and electron ambipolar conduction even with high work function source/drain contact metals, signifying that contact engineering will be vital to suppress the electron branch and improve hole conduction.

1.
Y.
Shen
et al,
Adv. Mater.
34
,
2201916
(
2022
).
3.
P.
Kaushal
and
G.
Khanna
,
Mater. Sci. Semicond. Process.
143
,
106546
(
2022
).
4.
M.
Wu
,
Y.
Xiao
,
Y.
Zeng
,
Y.
Zhou
,
X.
Zeng
,
L.
Zhang
, and
W.
Liao
,
InfoMat
3
,
362
(
2021
).
5.
K.
Uchida
,
H.
Watanabe
,
A.
Kinoshita
,
J.
Koga
,
T.
Numata
, and
S.
Takagi
,
2002 International Electron Devices Meeting
,
San Francisco, CA
,
8–11 December 2002
(
IEEE
,
New York
,
2002
).
6.
L.
Yin
,
R.
Cheng
,
J.
Ding
,
J.
Jiang
,
Y.
Hou
,
X.
Feng
,
Y.
Wen
, and
J.
He
,
ACS Nano
18
,
7739
(
2024
).
7.
A.
Razavieh
,
P.
Zeitzoff
, and
E. J.
Nowak
,
IEEE Trans. Nanotechnol.
18
,
999
(
2019
).
8.
F.
Wu
,
H.
Tian
,
Y.
Shen
,
Z.
Hou
,
J.
Ren
,
G.
Gou
,
Y.
Sun
,
Y.
Yang
, and
T.-L.
Ren
,
Nature
603
,
259
(
2022
).
9.
H.
Liu
,
A. T.
Neal
, and
P. D.
Ye
,
ACS Nano
6
,
8563
(
2012
).
10.
F.
Zhang
and
J.
Appenzeller
,
Nano Lett.
15
,
301
(
2015
).
11.
Q.
Smets
et al,
IEEE International Electron Devices Meeting (IEDM)
,
San Francisco, CA
(
IEEE
,
New York
,
2021
).
12.
A.
Penumatcha
et al,
2023 International Electron Devices Meeting (IEDM)
,
San Francisco, CA
(IEEE, New York,
2023
).
13.
A.
Provias
et al,
2023 International Electron Devices Meeting (IEDM)
,
San Francisco, CA
(IEEE, New York,
2023
).
14.
Y. Y.
Chung
et al,
2023 International Electron Devices Meeting (IEDM)
,
San Francisco, CA
(IEEE, New York,
2023
).
15.
X.
Xiong
,
S.
Liu
,
H.
Liu
,
Y.
Chen
,
X.
Shi
,
X.
Wang
,
X.
Li
,
R.
Huang
, and
Y.
Wu
, in
2022 International Electron Devices Meeting (IEDM)
,
San Francisco, CA
(IEEE, New York,
2022
).
16.
T.
Kawanago
,
R.
Kajikawa
,
K.
Mizutani
,
S. L.
Tsai
,
I.
Muneta
,
T.
Hoshii
,
K.
Kakushima
,
K.
Tsutsui
, and
H.
Wakabayashi
,
IEEE J. Electron Devices Soc.
11
,
15
(
2023
).
17.
K.
Maxey
et al, in
2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)
,
Honolulu, HI
(IEEE, New York,
2022
).
18.
K.
Lu
,
J.
Shim
,
K. S.
Kim
,
S. W.
Kim
, and
J.
Kim
,
Nat. Electron.
7
,
416
(
2024
).
19.
A.
Liu
et al,
Nano-Micro. Lett.
16
,
119
(
2024
).
21.
W.
Wei
,
M.
Zhang
,
J.
Ren
, and
K.
Wang
,
ACS Appl. Nano Mater.
7
,
14844
(
2024
).
22.
N.
Sakai
and
T.
Sasaki
,
Acc. Mater. Res.
5
,
752
(
2024
).
23.
Y.
Zhang
,
R.
Zhang
,
Y.
Guo
,
Y.
Li
, and
K.
Li
,
J. Alloys Compd.
998
,
174916
(
2024
).
24.
K. P.
O’Brien
et al,
2021 IEEE International Electron Devices Meeting (IEDM)
,
San Francisco, CA
(IEEE, New York,
2021
).
25.
N. H.
Patoary
,
J.
Xie
,
G.
Zhou
,
F.
Al Mamun
,
M.
Sayyad
,
S.
Tongay
, and
I. S.
Esqueda
,
Sci. Rep.
13
,
3304
(
2023
).
26.
T.
Matsukawa
and
T.
Ishigaki
,
Dalton Trans.
50
,
7590
(
2021
).
27.
S.
Li
,
S.
Wang
,
D.-M.
Tang
,
W.
Zhao
,
H.
Xu
,
L.
Chu
,
Y.
Bando
,
D.
Golberg
, and
G.
Eda
,
Appl. Mater. Today
1
,
60
(
2015
).
30.
R.
Browning
,
N.
Kuperman
,
R.
Solanki
,
V.
Kanzyuba
, and
S.
Rouvimov
,
Semicond. Sci. Technol.
31
,
095002
(
2016
).
32.
A.
Singh
,
M.
Moun
,
M.
Sharma
,
A.
Barman
,
A.
Kumar Kapoor
, and
R.
Singh
,
Appl. Surf. Sci.
538
,
148201
(
2021
).
33.
Z.
Zhang
et al,
Nat. Sci. Rev.
7
,
737
(
2020
).
34.
X.
Wang
,
X.
Shi
,
C.
Gu
,
Q.
Guo
,
H.
Liu
,
X.
Li
, and
Y.
Wu
,
APL Mater.
9
,
071109
(
2021
).
35.
H. C. P.
Movva
,
A.
Rai
,
S.
Kang
,
K.
Kim
,
B.
Fallahazad
,
T.
Taniguchi
,
K.
Watanabe
,
E.
Tutuc
, and
S. K.
Banerjee
,
ACS Nano
9
,
10402
(
2015
).
36.
C.-S.
Pang
,
T. Y. T.
Hung
,
A.
Khosravi
,
R.
Addou
,
Q.
Wang
,
M. J.
Kim
,
R. M.
Wallace
, and
Z.
Chen
,
Adv. Electron. Mater.
6
,
1901304
(
2020
).
37.
C.-C.
Cheng
et al,
2019 Symposium on VLSI Technology
,
Kyoto
(IEEE, New York,
2019
).
38.
X.
Xiong
,
A.
Tong
,
X.
Wang
,
S.
Liu
,
X.
Li
,
R.
Huang
, and
Y.
Wu
,
2021 IEEE International Electron Devices Meeting (IEDM)
,
San Francisco, CA
(IEEE, New York,
2021
).
39.
H. R.
Rasouli
,
N.
Mehmood
,
O.
Çakiroǧlu
, and
T.
Serkan Kasirga
,
Nanoscale
11
,
7317
(
2019
).
40.
S.
Chowdhury
,
A.
Roy
,
I.
Bodemann
, and
S. K.
Banerjee
,
ACS Appl. Mater. Interfaces
12
,
15885
(
2020
).
41.
B.
Liu
,
M.
Fathi
,
L.
Chen
,
A.
Abbas
,
Y.
Ma
, and
C.
Zhou
,
ACS Nano
9
,
6119
(
2015
).
42.
K.
Xu
,
Z.
Wang
,
X.
Du
,
M.
Safdar
,
C.
Jiang
, and
J.
He
,
Nanotechnology
24
,
465705
(
2013
).
43.
Z.
Wu
,
W.
Zhao
,
J.
Jiang
,
T.
Zheng
,
Y.
You
,
J.
Lu
, and
Z.
Ni
,
J. Phys. Chem. C
121
,
12294
(
2017
).
44.
O. B.
Aslan
,
M.
Deng
, and
T. F.
Heinz
,
Phys. Rev. B
98
,
115308
(
2018
).
45.
S.
McDonnell
,
R.
Addou
,
C.
Buie
,
R. M.
Wallace
, and
C. L.
Hinkle
,
ACS Nano
8
,
2880
(
2014
).
46.
L.
Cheng
,
X.
Qin
,
A. T.
Lucero
,
A.
Azcatl
,
J.
Huang
,
R. M.
Wallace
,
K.
Cho
, and
J.
Kim
,
ACS Appl. Mater. Interfaces
6
,
11834
(
2014
).
47.
T.
Yun
et al,
Appl. Phys. Lett.
119
,
133106
(
2021
).
48.
Q.
Qian
,
B.
Li
,
M.
Hua
,
Z.
Zhang
,
F.
Lan
,
Y.
Xu
,
R.
Yan
, and
K. J.
Chen
,
Sci. Rep.
6
,
27676
(
2016
).
49.
P.
Zhao
,
A.
Azcatl
,
P.
Bolshakov
,
J.
Moon
,
C. L.
Hinkle
,
P. K.
Hurley
,
R. M.
Wallace
, and
C. D.
Young
, “Effects of annealing on top-gated MoS2 transistors with HfO2 dielectric,”
J. Vac. Sci. Technol. B
35
,
01A118
(
2017
).
50.
Z.
Li
,
Y.
Wang
,
J.
Jiang
,
Y.
Liang
,
B.
Zhong
,
H.
Zhang
,
K.
Yu
,
G.
Kan
, and
M.
Zou
,
Nano Res.
13
,
591
(
2020
).
51.
A. N.
Hoffman
et al,
ACS Appl. Mater. Interfaces
10
,
36540
(
2018
).
52.
A.
Roy
et al,
ACS Appl. Mater. Interfaces
8
,
7396
(
2016
).
53.
S.
Das
and
J.
Appenzeller
,
Appl. Phys. Lett.
103
,
103501
(
2013
).
54.
C. H.
Naylor
et al,
2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)
,
Kyoto
(IEEE, New York,
2023
).
55.
Y.
Yi
,
C.
Wu
,
H.
Liu
,
J.
Zeng
,
H.
He
, and
J.
Wang
,
Nanoscale
7
,
15711
(
2015
).
You do not currently have access to this content.