Scandium nitride (ScN) by plasma-enhanced atomic layer deposition (PEALD) was demonstrated on silicon (100), sapphire (0001), and magnesium oxide (001) substrates under ultrahigh purity conditions using a new Sc precursor, bis(ethylcyclopentadienyl)scandium-chloride [ClSc(EtCp)2]. Out-of-plane x-ray diffraction patterns indicated single-crystal, cubic phase ScN deposited at 215 °C on sapphire (0001) and magnesium oxide (001) substrates, whereas phi-scans confirmed epitaxial growth. The ScN thin films grown on silicon with native oxide were polycrystalline with no preferential orientation. The ScN films showed a nitrogen-to-scandium ratio of approximately 1:1 measured by x-ray photoelectron spectroscopy, with ultra-low levels of elemental impurities including 2.5 at. % chlorine, 0.9 at. % carbon, and 0.4 at. % oxygen. ClSc(EtCp)2 and N2–H2 plasma were evaluated as ScN co-precursors at substrate temperatures ranging from 200 to 300 °C, where we identified an atomic layer deposition window between 200 and 215 °C. Images by field emission scanning electron microscopy (FESEM) on 43 nm-thick films grown on untreated silicon revealed columnar grains with lateral sizes ranging from 16 to 28 nm. ScN conformality across 4:1 aspect ratio silicon trench structures with 312 nm-wide openings was also imaged by FESEM showing a top-to-bottom thickness ratio of 75%. ScN electrical properties were evaluated by performing Hall measurements to determine mobility, free electron concentration, and resistivity. For ScN PEALD on magnesium oxide (001), the average mobility was 298 cm2/V s with a carrier concentration of 2.35 × 1019 cm−3. The average resistivity was 1.01 mΩ cm.

1.
Sai
Mu
,
Andrew J. E.
Rowberg
,
Joshua
Leveillee
,
Feliciano
Giustino
, and
Chris G.
Van de Walle
,
Phys. Rev. B
104
,
075118
(
2021
).
2.
Yu
Kumagai
,
Naoki
Tsunoda
, and
Fumiyasu
Oba
,
Phys. Rev. Appl.
9
,
034019
(
2018
).
3.
Ruopeng
Deng
,
B. D.
Ozsdolay
,
P. Y.
Zheng
,
S. V.
Khare
, and
D.
Gall
,
Phys. Rev. B
91
,
045104
(
2015
).
4.
Yuichi
Oshima
,
Encarnación G.
Víllora
, and
Kiyoshi
Shimamura
,
J. Appl. Phys.
115
,
153508
(
2014
).
5.
M. A.
Moram
,
Z. H.
Barber
, and
C. J.
Humphreys
,
Thin Solid Films
516
,
8569
(
2008
).
6.
D.
Gall
et al,
J. Vac. Sci. Technol. A
16
,
2411
(
1998
).
7.
Arthur R.
Smith
,
Hamad A. H.
Al-Brithen
,
David C.
Ingram
, and
Daniel
Gall
,
J. Appl. Phys.
90
,
1809
(
2001
).
8.
Duc V.
Dinh
,
Frank
Peiris
,
Jonas
Lähnemann
, and
Oliver
Brandt
,
Appl. Phys. Lett.
123
,
112102
(
2023
).
9.
Sit
Kerdsongpanya
et al,
Appl. Phys. Lett.
99
,
232113
(
2011
).
10.
Bivas
Saha
,
Timothy D
Sands
, and
Umesh V
Waghmare
,
J. Phys.: Condens. Matter
24
,
415303
(
2012
).
11.
Polina V.
Burmistrova
,
Jesse
Maassen
,
Tela
Favaloro
,
Bivas
Saha
,
Shuaib
Salamat
,
Yee Rui
Koh
,
Mark S.
Lundstrom
,
Ali
Shakouri
, and
Timothy D.
Sands
,
J. Appl. Phys.
113
,
153704
(
2013
).
12.
Jeremy L.
Schroeder
,
David A.
Ewoldt
,
Reja
Amatya
,
Rajeev J.
Ram
,
Ali
Shakouri
, and
Timothy D.
Sands
,
J. Microelectromech. Syst.
23
,
672
(
2014
).
13.
Sit
Kerdsongpanya
,
Olle
Hellman
,
Bo
Sun
,
Yee Kan
Koh
,
Jun
Lu
,
Ngo
Van Nong
,
Sergei I.
Simak
,
Björn
Alling
, and
Per
Eklund
,
Phys. Rev. B
96
,
195417
(
2017
).
14.
Dheemahi
Rao
et al,
Appl. Phys. Lett.
116
,
152103
(
2020
).
15.
M. J.
Kappers
,
M. A.
Moram
,
Y.
Zhang
,
M. E.
Vickers
,
Z. H.
Barber
, and
C. J.
Humphreys
,
Phys. B
401–402
,
296
(
2007
).
16.
C. F.
Johnston
,
M. J.
Kappers
,
M. A.
Moram
,
J. L.
Hollander
, and
C. J.
Humphreys
,
J. Cryst. Growth
311
,
3295
(
2009
).
17.
M. A.
Moram
,
M. J.
Kappers
, and
C. J.
Humphreys
,
Phys. Status Solidi C
7
,
1778
(
2010
).
18.
Morito
Akiyama
,
Toshihiro
Kamohara
,
Kazuhiko
Kano
,
Akihiko
Teshigahara
,
Yukihiro
Takeuchi
, and
Nobuaki
Kawahara
,
Adv. Mater.
21
,
593
(
2009
).
19.
Simon
Fichtner
,
Niklas
Wolff
,
Fabian
Lofink
,
Lorenz
Kienle
, and
Bernhard
Wagner
,
J. Appl. Phys.
125
,
114103
(
2019
).
20.
Olaf
Zywitzki
,
Thomas
Modes
,
Stephan
Barth
,
Hagen
Bartzsch
, and
Peter
Frach
,
Surf. Coat. Technol
309
,
417
(
2017
).
21.
Marc-Alexandre
Dubois
and
Paul
Muralt
,
Appl. Phys. Lett.
74
,
3032
(
1999
).
22.
R.
Ruby
and
P.
Merchant
, in
Proceedings of IEEE 48th Annual Symposium on Frequency Control
(
IEEE
,
Boston, MA
,
1994
), pp.
135
138
.
23.
Milena
Moreira
,
Johan
Bjurström
,
Ilia
Katardjev
, and
Ventsislav
Yantchev
,
Vacuum
86
,
23
(
2011
).
24.
Tom-Niklas
Kreutzer
,
Simon
Fichtner
,
Bernhard
Wagner
and
Fabian
Lofink
, in
IEEE International Symposium on Applications of Ferroelectrics
(
IEEE
,
Sydney
,
2021
), pp.
1
3
.
25.
Qi
Wang
,
Yipeng
Lu
,
Sergey
Mishin
,
Yury
Oshmyansky
, and
David A.
Horsley
,
J. Microelectromech. Syst.
26
,
1132
(
2017
).
26.
Dixiong
Wang
,
Jeffrey
Zheng
,
Pariasadat
Musavigharavi
,
Wanlin
Zhu
,
Alexandre C.
Foucher
,
Susan E.
Trolier-McKinstry
,
Eric A.
Stach
, and
Roy H.
Olsson
III
,
IEEE Electron Device Lett.
41
,
1774
(
2020
).
27.
Daniel
Drury
,
Keisuke
Yazawa
,
Andriy
Zakutayev
,
Brendan
Hanrahan
, and
Geoff
Brennecka
,
Micromachines
13
,
887
(
2022
).
28.
Maryam S.
Hosseini
,
Masoumeh
Ebrahimi
,
Pooria
Yaghini
, and
Nader
Bagherzadeh
,
IEEE Trans. Emerg. Top. Comput.
10
,
1657
(
2022
).
29.
Nicholas A.
Strnad
,
Daniel M.
Potrepka
,
Brendan M.
Hanrahan
,
Glen R.
Fox
,
Ronald G.
Polcawich
,
Jeffrey S.
Pulskamp
,
Ryan R.
Knight
, and
Ryan Q.
Rudy
,
J. Vac. Sci. Technol. A
41
,
050801
(
2023
).
30.
Tai
Nguyen
,
Noureddine
Adjeroud
,
Sebastjan
Glinsek
,
Yves
Fleming
,
Jérôme
Guillot
,
Patrick
Grysan
, and
Jérôme
Polesel-Maris
,
APL Mater.
8
,
071101
(
2020
).
31.
Elmeri
Österlund
,
Heli
Seppänen
,
Kristina
Bespalova
,
Ville
Miikkulainen
, and
Mervi
Paulasto-Kröckel
,
J. Vac. Sci. Technol. A
39
,
032403
(
2021
).
32.
N. A.
Strnad
et al,
J. Vac. Sci. Technol. A
40
,
042403
(
2022
).
33.
A.
Shih
,
J. E.
Yater
,
C.
Hor
, and
R.
Abrams
,
Appl. Surf. Sci.
211
,
136
(
2003
).
34.
Gilbert B.
Rayner
, Jr.
,
Noel
O’Toole
,
Jeffrey
Shallenberger
, and
Blaine
Johs
,
J. Vac. Sci. Technol. A
38
,
062408
(
2020
).
35.
Rainer
Niewa
,
Dmitry A.
Zherebtsov
,
Martin
Kirchner
,
Marcus
Schmidt
, and
Walter
Schnelle
,
Chem. Mater.
16
,
5445
(
2004
).
36.
Z.
Gu
,
J. H.
Edgar
,
J.
Pomeroy
,
M.
Kuball
, and
D. W.
Coffey
,
J. Mater. Sci.: Mater. Electron.
15
,
555
(
2004
).
37.
T. D.
Moustakas
,
R. J.
Molnar
, and
J. P.
Dismukes
, in
Proceedings of the First Symposium on III–V Nitride Materials and Processes
, ECS Proceedings series, edited by
T. D.
Moustakas
,
J. P.
Dismukes
, and
S. J.
Pearton
(
The Electrochemical Society, Inc.
,
Pennington, NJ
,
1996
), Vol.
96–11
, pp.
197
204
.
You do not currently have access to this content.