The need for precise control of nanoscale geometric features poses a challenge in manufacturing advanced gate-all-around nanotransistors. The high material selectivity required in fabricating these transistors makes thermal gas etching much more appealing in comparison to liquid phase and plasma-based etching techniques. The selective thermal etching by F2 of silicon–germanium (SiGe) stacks comprised of alternating layers of silicon (Si) and SiGe is explored in this context for semiconductor manufacturing applications. We propose and develop computer simulations as a tool to predict the etch profile evolution over time in such an etching process. The tool is based on a mathematical model that considers the transport processes and surface interactions involved in the gas phase etching process—which at the nanoscale is primarily Knudsen diffusion in the free molecular flow regime. Thus, the transport model is formulated as a boundary integral equation, which takes into account the direct flux of etchant molecules that any given point on the exposed surface receives from the bulk gas phase as well as the re-emission flux from other parts of the structure itself. We compared the applicability of two different surface reaction models—a model where the local etch rate is linear in the flux at a point and a Langmuir adsorption/reaction model—to connect the net flux received at a point on the surface to the local etch rate. This paper precedes Paper II of this series, which describes the experimental methods and comparison with model predictions of F2 etching in high aspect ratio Si–SiGe stacked nanostructures.

1.
N.
Loubet
et al., in 2017 Symposium on VLSI Technology, Kyoto, Japan, June 2017 (IEEE, New York, 2017), pp. T230–T231.
2.
G.
Bae
et al., in Internatioanl Electron Devices Meeting, San Francisco, CA, December 2018 (IEEE, New York, 2018), pp. 28–27.
3.
S.
Kim
et al.,
IEEE Trans. Electron. Devices
67
,
2648
(
2020
).
4.
H.
Mertens
et al., in 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, June 2016 (IEEE, New York, 2016), pp. 1–2.
5.
S.
Kal
et al., Proc. SPIE 10963, 109630L (2019).
6.
N.
Loubet
et al., in International Electronic Devices Meeting, San Francisco, CA, December 2019 (IEEE, New York, 2019), pp. 11.4.1–11.4.4.
7.
A.
Okuyama
,
S.
Saito
,
Y.
Hagimoto
,
K.
Nishi
,
A.
Suzuki
,
T.
Toshima
, and
H.
Iwamoto
,
Solid State Phenom.
219
,
115
(
2014
).
8.
Y.
Oniki
,
E.
Altamirano-Sánchez
, and
F.
Holsteyns
,
ECS Trans.
92
,
3
(
2019
).
9.
S.
Kal
,
C.
Pereira
,
Y.
Oniki
,
F.
Holsteyns
,
J.
Smith
,
A.
Mosden
,
K.
Kumar
,
P.
Biolsi
, and
T.
Hurd
, in The 20th Surface Preparation and Cleaning Conference, Cambridge, MA, April 2018 (SPCC, Mendon, MA, 2018).
10.
G. M. D.
Melaet
,
J.
Zhu
,
M. N.
Kawaguchi
,
X.
Hua
, and
M. P.
Gordon
, “Selective SiGe etching using thermal F2 with additive,” World Intellectual Property Organization WO2024039530 (22 February 2024).
11.
A.
Kuriakose
and
J.
Margrave
,
J. Phys. Chem. US
68
,
2671
(
1964
).
12.
M.
Chen
,
V.
Minkiewicz
, and
K.
Lee
,
J. Electrochem. Soc.
126
,
1946
(
1979
).
13.
J.
Mucha
,
V.
Donnelly
,
D.
Flamm
, and
L.
Webb
,
J. Phys. Chem. US
85
,
3529
(
1981
).
14.
L. E.
Carter
and
E. A.
Carter
,
J. Phys. Chem. US
100
,
873
(
1996
).
15.
A.
Fischer
,
T.
Lill
, and
M.
Kawaguchi
, Proc. SPIE PC12499, PC124990D (2023).
16.
M.
Kawaguchi
, “Low energy methods for highly selective etching and surface treatment of advanced nanodevices” (2024), Fall ECS PRiME Conference October 2024, D02-1781.
17.
E. S. G.
Shaqfeh
and
C. W.
Jurgensen
,
J. Appl. Phys.
66
,
4664
(
1989
).
18.
V. K.
Singh
,
E. S. G.
Shaqfeh
, and
J. P.
McVittie
,
J. Vac. Sci. Technol. B
10
,
1091
(
1992
).
19.
V. K.
Singh
, “The role of surface transport of reaction precursors in plasma etching and deposition,” Ph.D. thesis (Stanford University, 1993).
20.
S.
Hamaguchi
and
M.
Dalvie
,
J. Vac. Sci. Technol. A
12
,
2745
(
1994
).
21.
C.
Lee
,
D. B.
Graves
, and
M. A.
Lieberman
,
Plasma Chem. Plasma Process
16
,
99
(
1996
).
22.
R. J.
Xie
,
J. D.
Kava
, and
M.
Siegel
,
J. Vac. Sci. Technol. A
14
,
1067
(
1996
).
23.
S.
Abdollahi-Alibeik
,
J. P.
McVittie
,
K. C.
Saraswat
,
V.
Sukharev
, and
P.
Schoenborn
,
J. Vac. Sci. Technol. A
17
,
2485
(
1999
).
24.
S.
Abdollahi-Alibeik
,
J.
Zheng
,
J. P.
McVittie
,
K. C.
Saraswat
,
C. T.
Gabriel
, and
S. C.
Abraham
,
J. Vac. Sci. Technol. B
19
,
179
(
2001
).
25.
M. A.
Lieberman
,
Plasma Sources Sci. Technol.
18
,
014002
(
2008
).
26.
Z.
Zajo
,
D. S. L.
Mui
,
J.
Zhu
,
Y.
Shari'ati
,
M.
Kawaguchi
, and
E. S. G.
Shaqfeh
,
J. Vac. Sci. Technol. A
43
,
013007
(
2025
).
You do not currently have access to this content.