Surface etching and fluorination of yttria (Y2O3) by energetic fluorine (F) ions and radicals were studied with mass-selected mono-energetic ion beams in an ion energy range of 500–3000 eV and xenon difluoride (XeF2) gas exposure. The etching yields of Y2O3 were evaluated in this energy range and found to be lower than those of silicon dioxide (SiO2). It was also found that, when the ion incident energy was sufficiently low, a small percentage of Y2O3 near its surface was converted to yttrium trifluoride (YF3), rather than yttrium oxyfluoride. However, as the ion incident energy increased, the fraction of yttrium oxyfluoride became dominant and the fractions of Y2O3 and YF3 decreased, indicating that energetic incident F+ ions preferentially removed O atoms and replaced them with F atoms, but also etched YF3 if it formed on the surface. Heating the surface from room temperature to 150 °C did not affect the outcome. The results suggest how fluorination takes place on Y2O3-coated plasma-facing surfaces exposed to F-based reactive plasmas in plasma etching systems.

1.
J. W.
Coburn
and
H. F.
Winters
,
J. Vac. Sci. Technol.
16
,
391
(
1979
).
2.
Brian
Chapman
,
Glow Discharge Processes: Sputtering and Plasma Etching
(
Wiley
,
New York
,
1980
).
3.
H. F.
Winters
,
J. W.
Coburn
, and
T. J.
Chuang
,
J. Vac. Sci. Technol., B
1
,
469
(
1983
).
4.
S.
Hamaguchi
,
IBM J. Res. Dev.
43
,
199
(
1999
).
5.
H.
Conrads
and
M.
Schmidt
,
Plasma Sources Sci. Technol.
9
,
441
(
2000
).
6.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
New York
,
2005
).
7.
V. M.
Donnelly
and
A.
Kornblit
,
J. Vac. Sci. Technol. A
31
,
050825
(
2013
).
8.
T.
Makabe
and
Z. L.
Petrovic
,
Plasma Electronics: Applications in Microelectronic Device Fabrication
, 2nd ed. (
CRC
,
Boca Raton
,
2014
).
9.
K.
Nojiri
,
Dry Etching Technology for Semiconductors
(
Springer International Publishing
,
Cham
,
2015
).
10.
G. S.
Oehrlein
and
S.
Hamaguchi
,
Plasma Sources Sci. Technol.
27
,
023001
(
2018
).
11.
I.
Adamovich
et al,
J. Phys. D: Appl. Phys.
55
,
373001
(
2022
).
12.
K.
Arts
,
S.
Hamaguchi
,
T.
Ito
,
K.
Karahashi
,
H. C. M.
Knoops
,
A. J. M.
Mackus
, and
W. M. M. E.
Kessels
,
Plasma Sources Sci. Technol.
31
,
103002
(
2022
).
13.
G. S.
Oehrlein
et al,
J. Vac. Sci. Technol. B
42
,
041501
(
2024
).
14.
K. P.
Cheung
and
C. P.
Chang
,
J. Appl. Phys.
75
,
4415
(
1994
).
15.
T.
Ohchi
,
S.
Kobayashi
,
M.
Fukasawa
,
K.
Kugimiya
,
T.
Kinoshita
,
T.
Takizawa
,
S.
Hamaguchi
,
Y.
Kamide
, and
T.
Tatsumi
,
Jpn. J. Appl. Phys.
47
,
5324
(
2008
).
16.
D. J.
Economou
,
J. Phys. D: Appl. Phys.
47
,
303001
(
2014
).
17.
T.
Ito
,
K.
Karahashi
,
M.
Fukasawa
,
T.
Tatsumi
, and
S.
Hamaguchi
,
Jpn. J. Appl. Phys.
50
,
08KD02
(
2011
).
18.
T.
Ito
,
K.
Karahashi
,
K.
Mizotani
,
M.
Isobe
,
S.-Y.
Kang
,
M.
Honda
, and
S.
Hamaguchi
,
Jpn. J. Appl. Phys.
51
,
08HB01
(
2012
).
19.
K.
Miwa
,
N.
Takada
, and
K.
Sasaki
,
J. Vac. Sci. Technol. A
27
,
831
(
2009
).
20.
G.
Cunge
,
B.
Pelissier
,
O.
Joubert
,
R.
Ramos
, and
C.
Maurice
,
Plasma Sources Sci. Technol.
14
,
599
(
2005
).
21.
J.
Iwasawa
,
R.
Nishimizu
,
M.
Tokita
,
M.
Kiyohara
, and
K.
Uematsu
,
J. Am. Ceram. Soc.
90
,
2327
(
2007
).
22.
K.
Miyashita
,
T.
Tsunoura
,
K.
Yoshida
,
T.
Yano
, and
Y.
Kishi
,
Jpn. J. Appl. Phys.
58
,
SEEC01
(
2019
).
23.
T.
Tsunoura
,
K.
Yoshida
,
T.
Yano
, and
Y.
Kishi
,
Jpn. J. Appl. Phys.
56
,
06HC02
(
2017
).
24.
T.
Goto
and
S.
Sugawa
,
Jpn. J. Appl. Phys.
54
,
128003
(
2015
).
25.
T. K.
Lin
,
D. S.
Wuu
,
S. Y.
Huang
, and
W. K.
Wang
,
Coatings
8
,
373
(
2018
).
26.
D. M.
Kim
,
Y. S.
Oh
,
S.
Kim
,
H. T.
Kim
,
D. S.
Lim
, and
S. M.
Lee
,
Thin Solid Films
519
,
6698
(
2011
).
27.
S.
Lee
,
J.
Lee
,
W.
Kim
, and
N. M.
Hwang
,
Coatings
10
,
1023
(
2020
).
28.
Y. C.
Cao
,
L.
Zhao
,
J.
Luo
,
K.
Wang
,
B. P.
Zhang
,
H.
Yokota
,
Y.
Ito
, and
J. F.
Li
,
Appl. Surf. Sci.
366
,
304
(
2016
).
29.
K.
Karahashi
and
S.
Hamaguchi
,
J. Phys. D: Appl. Phys.
47
,
224008
(
2014
).
30.
S.
Tachi
,
K.
Miyake
, and
T.
Tokuyama
,
Jpn. J. Appl. Phys.
21
,
141
(
1982
).
31.
K.
Ishikawa
,
K.
Karahashi
,
H.
Tsuboi
,
K.
Yanai
, and
M.
Nakamura
,
J. Vac. Sci. Technol. A
21
,
L1
(
2003
).
32.
K.
Karahashi
,
K.
Yanai
,
K.
Ishikawa
,
H.
Tsuboi
,
K.
Kurihara
, and
M.
Nakamura
,
J. Vac. Sci. Technol. A
22
,
1166
(
2004
).
33.
K.
Kurihara
,
Y.
Yamaoka
,
K.
Karahashi
, and
M.
Sekine
,
J. Vac. Sci. Technol. A
22
,
2311
(
2004
).
34.
K. I.
Yanai
,
K.
Karahashi
,
K.
Ishikawa
, and
M.
Nakamura
,
J. Appl. Phys.
97
,
053302
(
2005
).
35.
T.
Ito
,
K.
Karahashi
,
M.
Fukasawa
,
T.
Tatsumi
, and
S.
Hamaguchi
,
J. Vac. Sci. Technol. A
29
,
050601
(
2011
).
36.
K.
Karahashi
,
H.
Li
,
K.
Yamada
,
T.
Ito
,
S.
Numazawa
,
K.
Machida
,
K.
Ishikawa
, and
S.
Hamaguchi
,
Jpn. J. Appl. Phys.
56
,
06HB09
(
2017
).
37.
K.
Hine
,
S.
Yoshimura
,
K.
Ikuse
,
M.
Kiuchi
,
J.
Hashimoto
,
M.
Terauchi
,
M.
Nishitani
, and
S.
Hamaguchi
,
Jpn. J. Appl. Phys.
46
,
L1132
(
2007
).
38.
K.
Hine
,
S.
Yoshimura
,
K.
Ikuse
,
M.
Kiuchi
,
J.
Hashimoto
,
M.
Terauchi
,
M.
Nishitani
, and
S.
Hamaguchi
,
Thin Solid Films
517
,
835
(
2008
).
39.
S.
Yoshimura
,
K.
Hine
,
M.
Kiuchi
,
J.
Hashimoto
,
M.
Terauchi
,
Y.
Honda
,
M.
Nishitani
, and
S.
Hamaguchi
,
J. Phys. D: Appl. Phys.
44
,
255203
(
2011
).
40.
S.
Yoshimura
,
K.
Hine
,
M.
Kiuchi
,
J.
Hashimoto
,
M.
Terauchi
,
Y.
Honda
,
M.
Nishitani
, and
S.
Hamaguchi
,
Jpn. J. Appl. Phys.
51
,
08HB02
(
2012
).
41.
K.
Ikuse
,
S.
Yoshimura
,
M.
Kiuchi
,
M.
Terauchi
,
M.
Nishitani
, and
S.
Hamaguchi
,
J. Phys. D: Appl. Phys.
45
,
432001
(
2012
).
42.
H.
Li
,
K.
Karahashi
,
M.
Fukasawa
,
K.
Nagahata
,
T.
Tatsumi
, and
S.
Hamaguchi
,
J. Vac. Sci. Technol. A
33
,
060606
(
2015
).
43.
H.
Li
,
K.
Karahashi
,
M.
Fukasawa
,
K.
Nagahata
,
T.
Tatsumi
, and
S.
Hamaguchi
,
Jpn. J. Appl. Phys.
55
,
021202
(
2016
).
44.
H.
Li
,
K.
Karahashi
, and
P.
Friederich
,
J. Vac. Sci. Technol. A
35
,
05C303
(
2017
).
45.
H.
Li
et al,
Jpn. J. Appl. Phys.
57
,
06JC05
(
2018
).
46.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
,
K. D.
Bomben
, and
J.
Chastain
,
Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
(
Physical Electronics Inc.
,
Eden Prairie, MN
,
1992)
.
47.
H. F.
Winters
and
J. W.
Coburn
,
Appl. Phys. Lett.
34
,
70
(
1979
).
48.
D. E.
Ibbotson
,
D. L.
Flamm
,
J. A.
Mucha
, and
V. M.
Donnelly
,
Appl. Phys. Lett.
44
,
1129
(
1984
).
49.
C.
Steinbrüchel
,
Appl. Phys. Lett.
55
,
1960
(
1989
).
50.
D. C.
Gray
,
I.
Tepermeister
, and
Herbert H.
Sawin
,
J. Vac. Sci. Technol. B
11
,
1243
(
1993
).
51.
N. A.
Mauchamp
and
S.
Hamaguchi
,
J. Phys. D: Appl. Phys.
55
,
225209
(
2022
).
52.
H.
Ohta
and
S.
Hamaguchi
,
J. Vac. Sci. Technol. A
19
,
2373
(
2001
).
53.
C. J.
Powell
and
A.
Jablonski
,
J. Vac. Sci. Technol. A
17
,
1122
(
1999
).
54.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1818
(
2010
).
55.
R. P.
Vasquez
,
M. C.
Foote
, and
B. D.
Hunt
,
J. Appl. Phys.
66
,
4866
(
1989
).
56.
M.
Rizhkov
,
V. A.
Gubanov
,
M. P.
Bytzman
,
A. L.
Hagström
, and
E. Z.
Kurmaev
,
J. Electron Spectrosc. Relat. Phenom.
18
,
227
(
1980
).
You do not currently have access to this content.