Machine learning approaches to potential generation for molecular dynamics (MD) simulations of low-temperature plasma-surface interactions could greatly extend the range of chemical systems that can be modeled. Empirical potentials are difficult to generalize to complex combinations of multiple elements with interactions that might include covalent, ionic, and metallic bonds. This work demonstrates that a specific machine learning approach, Deep Potential Molecular Dynamics (DeepMD), can generate potentials that provide a good model of plasma etching in the Si-Cl-Ar system. Comparisons are made between MD results using DeepMD models and empirical potentials, as well as experimental measurements. Pure Si properties predicted by the DeepMD model are in reasonable agreement with experimental results. Simulations of Si bombardment by Ar + ions demonstrate the ability of the DeepMD method to predict sputtering yields as well as the depth of the amorphous-crystalline interface. Etch yields as a function of flux ratio and ion energy for simultaneous Cl 2 and Ar + impacts are in good agreement with previous simulation results and experiment. Predictions of etch yields and etch products during plasma-assisted atomic layer etching of Si-Cl 2-Ar are shown to be in good agreement with MD predictions using empirical potentials and with experiment. Finally, good agreement was also seen with measurements for the spontaneous etching of Si by Cl atoms at 300 K. The demonstration that DeepMD can reproduce results from MD simulations using empirical potentials is a necessary condition to future efforts to extend the method to a much wider range of systems for which empirical potentials may be difficult or impossible to obtain.

1.
G. S.
Oehrlein
et al.,
J. Vac. Sci. Technol. B
42
,
041501
(
2024
).
2.
N.
Marchack
,
L.
Buzi
,
D. B.
Farmer
,
H.
Miyazoe
,
J. M.
Papalia
,
H.
Yan
,
G.
Totir
, and
S. U.
Engelmann
,
J. Appl. Phys.
130
,
080901
(
2021
).
3.
D. B.
Graves
et al.,
J. Vac. Sci. Technol. B
42
,
042202
(
2024
).
4.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
5.
C. M.
Huard
,
Y.
Zhang
,
S.
Sriraman
,
A.
Paterson
,
K. J.
Kanarik
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
35
,
031306
(
2017
).
6.
T.
Lill
,
I. L.
Berry
,
M.
Shen
,
J.
Hoang
,
A.
Fischer
,
T.
Panagopoulos
,
J. P.
Chang
, and
V.
Vahedi
,
J. Vac. Sci. Technol. A
41
,
023005
(
2023
).
7.
B.
Horstmann
,
D.
Pate
,
B.
Smith
,
M. A.
Mamun
,
G.
Atkinson
,
U.
Ozgur
, and
V.
Avrutin
,
J. Micromech. Microeng.
34
,
075008
(
2024
).
8.
R.
Dussart
,
T.
Tillocher
,
P.
Lefaucheux
, and
M.
Boufnichel
,
J. Phys. D: Appl. Phys.
47
,
123001
(
2014
).
9.
E. C.
Neyts
and
P.
Brault
,
Plasma Process. Polym.
14
,
1600145
(
2017
).
10.
P.
Vanraes
,
S.
Parayil Venugopalan
, and
A.
Bogaerts
,
Appl. Phys. Rev.
8
,
041305
(
2021
).
11.
D. B.
Graves
and
P.
Brault
,
J. Phys. D: Appl. Phys.
42
,
194011
(
2009
).
12.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
15.
D. W.
Brenner
,
O. A.
Shenderova
,
J. A.
Harrison
,
S. J.
Stuart
,
B.
Ni
, and
S. B.
Sinnott
,
J. Phys.: Condens. Matter
14
,
783
(
2002
).
16.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
,
J. Phys. Chem. A
105
,
9396
(
2001
).
17.
J.
Han
,
L.
Zhang
,
R.
Car
, and
E.
Weinan
,
Commun. Comput. Phys.
23
,
629
(
2018
).
18.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
E.
Weinan
,
Phys. Rev. Lett.
120
,
143001
(
2018
).
19.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
,
J. Chem. Phys.
148
,
241722
(
2018
).
20.
S.
Batzner
,
A.
Musaelian
,
L.
Sun
,
M.
Geiger
,
J. P.
Mailoa
,
M.
Kornbluth
,
N.
Molinari
,
T. E.
Smidt
, and
B.
Kozinsky
,
Nat. Commun.
13
,
2453
(
2022
).
21.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
,
Sci. Adv.
3
,
e1603015
(
2017
).
22.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
23.
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
,
J. Comput. Phys.
285
,
316
(
2015
).
24.
A. V.
Shapeev
,
Multiscale Model. Simul.
14
,
1153
(
2016
).
26.
27.
A. P.
Thompson
et al.,
Comput. Phys. Commun.
271
,
108171
(
2022
).
28.
H. J. C.
Berendsen
,
D.
van der Spoel
, and
R.
van Drunen
,
Comput. Phys. Commun.
91
,
43
(
1995
).
29.
L.
Bonati
and
M.
Parrinello
,
Phys. Rev. Lett.
121
,
265701
(
2018
).
30.
R.
Li
,
E.
Lee
, and
T.
Luo
,
Mater. Today Phys.
12
,
100181
(
2020
).
31.
L.
Zhang
,
H.
Wang
,
R.
Car
, and
E.
Weinan
,
Phys. Rev. Lett.
126
,
236001
(
2021
).
32.
M. F. C.
Andrade
,
H.-Y.
Ko
,
L.
Zhang
,
R.
Car
, and
A.
Selloni
,
Chem. Sci.
11
,
2335
(
2020
).
33.
T. E.
Gartner
,
L.
Zhang
,
P. M.
Piaggi
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
Proc. Natl. Acad. Sci. U.S.A.
117
,
26040
(
2020
).
34.
A.
Mondal
,
D.
Kussainova
,
S.
Yue
, and
A. Z.
Panagiotopoulos
,
J. Chem. Theory Comput.
19
,
4584
(
2023
).
35.
W.
Liang
,
G.
Lu
, and
J.
Yu
,
Adv. Theory Simul.
3
,
2000180
(
2020
).
36.
I. A.
Balyakin
,
S. V.
Rempel
,
R. E.
Ryltsev
, and
A. A.
Rempel
,
Phys. Rev. E
102
,
052125
(
2020
).
37.
R.
Mathur
,
M. C.
Muniz
,
S.
Yue
,
R.
Car
, and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B
127
,
4562
(
2023
).
38.
J. F.
Ziegler
and
J. P.
Biersack
, “The stopping and range of ions in matter,” in Treatise on Heavy-Ion Science: Volume 6: Astrophysics, Chemistry, and Condensed Matter, edited by D. A. Bromley (Springer US, Boston, MA, 1985), pp. 93–129.
39.
L.
Chen
,
A.
Kaiser
,
M.
Probst
, and
S.
Shermukhamedov
,
Nucl. Fusion
61
,
016031
(
2020
).
40.
L.
Chen
,
I.
Sukuba
,
M.
Probst
, and
A.
Kaiser
,
RSC Adv.
10
,
4293
(
2020
).
41.
H.
Wang
,
X.
Guo
,
L.
Zhang
,
H.
Wang
, and
J.
Xue
,
Appl. Phys. Lett.
114
,
244101
(
2019
).
42.
J. R.
Vella
,
D.
Humbird
, and
D. B.
Graves
,
J. Vac. Sci. Technol. B
40
,
023205
(
2022
).
43.
J. R.
Vella
,
Q.
Hao
,
V. M.
Donnelly
, and
D. B.
Graves
,
J. Vac. Sci. Technol. A
41
,
062602
(
2023
).
44.
J. R.
Vella
,
M. A. I.
Elgarhy
,
Q.
Hao
,
V. M.
Donnelly
, and
D. B.
Graves
,
J. Vac. Sci. Technol. A
42
,
042604
(
2024
).
45.
J. R.
Vella
,
Q.
Hao
,
M. A.
Elgarhy
,
V. M.
Donnelly
, and
D. B.
Graves
,
Plasma Sources Sci. Technol.
33
,
075009
(
2024
).
46.
Y.
Zhang
,
H.
Wang
,
W.
Chen
,
J.
Zeng
,
L.
Zhang
,
H.
Wang
, and
E.
Weinan
,
Comput. Phys. Commun.
253
,
107206
(
2020
).
47.
P.
Giannozzi
et al.,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
48.
P.
Giannozzi
et al., “
Advanced capabilities for materials modelling with Quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
49.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
50.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
E.
Weinan
,
Comput. Phys. Commun.
228
,
178
(
2018
).
51.
J.
Zeng
et al.,
J. Chem. Phys.
159
,
054801
(
2023
).
52.
D. P.
Kingma
and
J.
Ba
, “Adam: A method for stochastic optimization,” arXiv:1412.6980 (2017).
53.
W.
Liang
,
J.
Zeng
,
D. M.
York
,
L.
Zhang
, and
H.
Wang
, “Learning DeePMD-Kit: A guide to building deep potential models,” in A Practical Guide to Recent Advances in Multiscale Modeling and Simulation of Biomolecules, edited by Y. Wang and R. Zhou (AIP Publishing LLC, Melville, NY, 2023), pp 6–1–6–20.
54.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
56.
57.
S.
Yoo
,
X. C.
Zeng
, and
J. R.
Morris
,
J. Chem. Phys.
120
,
1654
(
2004
).
58.
S. J.
Cook
and
P.
Clancy
,
Phys. Rev. B
47
,
7686
(
1993
).
60.
R. O. A.
Hall
,
Acta Crystallogr.
14
,
1004
(
1961
).
61.
H.
Nejat Pishkenari
,
E.
Mohagheghian
, and
A.
Rasouli
,
Phys. Lett. A
380
,
4039
(
2016
).
62.
Y.
Okada
and
Y.
Tokumaru
,
J. Appl. Phys.
56
,
314
(
1984
).
63.
H.
Balamane
,
T.
Halicioglu
, and
W. A.
Tiller
,
Phys. Rev. B
46
,
2250
(
1992
).
64.
S.
Yoo
,
S. S.
Xantheas
, and
X. C.
Zeng
,
Chem. Phys. Lett.
481
,
88
(
2009
).
65.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
Phys. Rev. B
69
,
075102
(
2004
).
66.
J. P.
Chang
,
J. C.
Arnold
,
G. C. H.
Zau
,
H. -S.
Shin
, and
H. H.
Sawin
,
J. Vac. Sci. Technol. A
15
,
1853
(
1997
).
67.
S.
Tachi
and
S.
Okudaira
,
J. Vac. Sci. Technol. B
4
,
459
(
1986
).
68.
D. J.
Oostra
,
R. P.
van Ingen
,
A.
Haring
,
A. E.
de Vries
, and
G. N. A.
van Veen
,
Appl. Phys. Lett.
50
,
1506
(
1987
).
69.
J. R.
Vella
and
D. B.
Graves
,
J. Vac. Sci. Technol. A
41
,
042601
(
2023
).
70.
D.
Humbird
,
D. B.
Graves
,
A. A. E.
Stevens
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
25
,
1529
(
2007
).
71.
D.
Humbird
and
D. B.
Graves
,
Pure Appl. Chem.
74
,
419
(
2002
).
72.
A. A. E.
Stevens
,
W. M. M.
Kessels
,
M. C. M.
van de Sanden
, and
H. C. W.
Beijerinck
,
J. Vac. Sci. Technol. A
24
,
1933
(
2006
).
73.
A.
Stukowski
,
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
74.
J. R.
Vella
and
D. B.
Graves
,
J. Vac. Sci. Technol. A
40
,
063203
(
2022
).
75.
Q.
Hao
,
P.
Kim
,
S. K.
Nam
,
S.-Y.
Kang
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. A
41
,
032605
(
2023
).
76.
Z. H.
Walker
and
E. A.
Ogryzlo
,
Chem. Phys.
153
,
483
(
1991
).
77.
P. M.
Piaggi
,
A.
Selloni
, and
R.
Car
,
Faraday Discuss.
249
,
98
(
2024
).
78.
T.
Feng
,
B.
Yang
,
J.
Zhao
, and
G.
Lu
,
Chem. Eng. Sci.
288
,
119836
(
2024
).
79.
W.
Dong
,
H.
Tian
,
W.
Zhang
,
J.-J.
Zhou
, and
X.
Pang
,
ACS Appl. Mater. Interfaces
16
,
530
(
2024
).
80.
N. S.
Pikalova
,
I. A.
Balyakin
,
A. A.
Yuryev
, and
A. A.
Rempel
,
Dokl. Phys. Chem.
514
,
9
(
2024
).
You do not currently have access to this content.