The Cr2O3–NiO mixed oxides’ thin films were formed by means of the layer-by-layer magnetron sputtering deposition of Cr2O3, NiO, and Cr2O3 layers on c-plane sapphire substrates. These thin-film structures, subjected to subsequent annealing, constituted a combination of the monocrystalline (0001) Cr2O3 and nonordered nickel oxide phase, which was a mixture of NiO and Ni2O3. The annealing at 900 and 1000 °С in air facilitated the diffusion of Ni and Cr atoms into the layers. Varying the annealing time allowed us to control the uniformity of the Ni and Cr distribution, the microrelief of the film surface, the transmittance in the visible region, and the sheet resistance of the Cr2O3–NiO thin-film structures. Thus, the films annealed at 900 °C during 30 min were characterized by a uniform distribution, a relatively weakly developed surface, a low sheet resistance, and the highest Haacke's Figure of Merit of 1.49 × 10–9 Ω–1. The formation of mixed Cr2O3–NiO oxides by the proposed approach was found to be an effective way to improve the performances of Cr2O3 based p-type transparent conductive electrodes.

1.
K.
Nakata
and
A.
Fujishima
,
J. Photochem. Photobiol., C
13
,
169
(
2012
).
2.
L.
Xiong
,
Y.
Guo
,
J.
Wen
,
H.
Liu
,
G.
Yang
,
P.
Qin
, and
G.
Fang
,
Adv. Funct. Mater.
28
,
1802757
(
2018
).
3.
D. D.
Yao
,
J. Z.
Ou
,
K.
Latham
,
S.
Zhuiykov
,
A. P.
O’Mullane
, and
K.
Kalantar-zadeh
,
Cryst. Growth Des.
12
,
1865
(
2012
).
4.
Z.
Dimitrova
and
D.
Gogova
,
Mater. Res. Bull.
40
,
333
(
2005
).
5.
X.
Guo
,
Y.
Tan
,
Y.
Hu
,
Z.
Zafar
,
J.
Liu
, and
J.
Zou
,
Sci. Rep.
11
,
21749
(
2021
).
6.
A. V.
Almaev
,
N. N.
Yakovlev
,
E. V.
Chernikov
, and
O. P.
Tolbanov
,
Tech. Phys. Lett.
45
,
1016
(
2019
).
7.
A. V.
Almaev
,
N. N.
Yakovlev
,
D. A.
Almaev
,
M. G.
Verkholetov
,
G. A.
Rudakov
, and
K. I.
Litvinova
,
Micromachines
14
,
1875
(
2023
).
8.
9.
T.
Ivanova
,
A.
Szekeres
,
M.
Gartner
,
D.
Gogova
, and
K. A.
Gesheva
,
Electrochim. Acta
46
,
2215
(
2001
).
10.
R. E.
Tanner
,
A.
Szekeres
,
D.
Gogova
, and
K.
Gesheva
,
Appl. Surf. Sci.
218
,
163
(
2003
).
11.
D.
Gogova
,
K.
Gesheva
,
A.
Kakanakova-Georgieva
, and
M.
Surtchev
,
Eur. Phys. J. Appl. Phys.
11
,
167
(
2000
).
12.
D.
Gogova
,
A.
Iossifova
,
T.
Ivanova
,
Z. L.
Dimitrova
, and
K.
Gesheva
,
J. Cryst. Growth
198–199
,
1230
(
1999
).
13.
T.-G.
Wang
,
D.
Jeong
,
Y.
Liu
,
Q.
Wang
,
S.
Iyengar
,
S.
Melin
, and
K. H.
Kim
,
Surf. Coat. Technol.
206
,
2638
(
2012
).
14.
J.
Musil
,
J.
Blažek
,
K.
Fajfrlík
,
R.
Čerstvý
, and
Š
Prokšová
,
Appl. Surf. Sci.
276
,
660
(
2013
).
15.
P.
Borisov
,
T.
Ashida
,
T.
Nozaki
,
M.
Sahashi
, and
D.
Lederman
,
Phys. Rev. B
93
,
174415
(
2016
).
16.
E.
Arca
et al,
J. Mater. Chem. C
5
,
12610
(
2017
).
17.
L.
Farrell
,
K.
Fleischer
,
D.
Caffrey
,
D.
Mullarkey
,
E.
Norton
, and
I. V.
Shvets
,
Phys. Rev. B
91
,
125202
(
2015
).
18.
N.
Barsan
,
C.
Simion
,
T.
Heine
,
S.
Pokhrel
, and
U.
Weimar
,
J. Electroceram.
25
,
11
(
2010
).
19.
D.
de Cogan
and
G. A.
Lonergan
,
J. Phys. Chem. Solids
38
,
333
(
1977
).
20.
A. V.
Almaev
,
B. O.
Kushnarev
,
E. V.
Chernikov
,
V. A.
Novikov
,
P. M.
Korusenko
, and
S. N.
Nesov
,
Superlattices Microstruct.
151
,
106835
(
2021
).
21.
G. T.
Chavan
,
Y.
Kim
,
M. Q.
Khokhar
,
S. Q.
Hussain
,
E.-C.
Cho
,
J.
Yi
,
Z.
Ahmad
,
P.
Rosaiah
, and
C.-W.
Jeon
,
Nanomaterials
13
,
1226
(
2023
).
22.
M.
Stolze
,
D.
Gogova
, and
L.-K.
Thomas
,
Thin Solid Films
476
,
185
(
2005
).
23.
C. G.
Granqvist
,
A.
Azens
,
A.
Hjelm
,
L.
Kullman
,
G. A.
Niklasson
,
D.
Rönnow
,
M.
Strømme Mattsson
,
M.
Veszelei
, and
G.
Vaivars
,
Sol. Energy
63
,
199
(
1998
).
24.
L.
Hu
,
R. H.
Wei
,
X. W.
Tang
,
W. J.
Lu
,
X. B.
Zhu
, and
Y. P.
Sun
,
J. Appl. Phys.
128
,
140902
(
2020
).
25.
J.
Singh
,
R.
Kumar
,
V.
Verma
, and
R.
Kumar
,
Mater. Sci. Semicond. Process.
123
,
105483
(
2021
).
26.
A.
Zekaik
,
H.
Benhebal
, and
B.
Benrabah
,
High Temp. Mater. Processes
38
,
806
(
2019
).
27.
E.
Arca
,
K.
Fleischer
, and
I. V.
Shvets
,
Appl. Phys. Lett.
99
,
111910
(
2011
).
28.
G. M.
Crosbie
,
G. J.
Tennenhouse
,
R. P.
Tischer
, and
H. S.
Wroblowa
,
J. Am. Ceram. Soc.
67
,
498
(
1984
).
29.
A. B.
Kehoe
,
E.
Arca
,
D. O.
Scanlon
,
I. V.
Shvets
, and
G. W.
Watson
,
J. Phys.: Condens. Matter
28
,
125501
(
2016
).
30.
N.
Uekawa
and
K.
Kaneko
,
J. Phys. Chem.
100
,
4193
(
1996
).
31.
S. Y.
Jeong
,
J. B.
Lee
,
H.
Na
, and
T. Y.
Seong
,
Thin Solid Films
518
,
4813
(
2010
).
32.
K.
Kaneko
,
T.
Nomura
, and
S.
Fujita
,
Phys. Status Solidi C
7
,
2467
(
2010
).
33.
J.
Frank
,
M.
Fleischer
, and
H.
Meixner
,
Sens. Actuators B: Chem.
34
,
373
(
1996
).
34.
M.-H.
Hwang
,
H.
Kong
,
J.-W.
Jeong
, and
H.-Y.
Lee
,
Superlattice Microst.
141
,
106503
(
2020
).
35.
N.
Fairley
et al,
Appl. Surf. Sci. Adv.
5
,
100112
(
2021
).
36.
G.
Haacke
,
J. Appl. Phys.
47
,
4086
(
1976
).
37.
A. G.
Shard
,
J. Vac. Sci. Technol. A
38
,
041201
(
2020
).
38.
M. C.
Biesinger
,
C.
Brown
,
J. R.
Mycroft
,
R. D.
Davidson
, and
N. S.
McIntyre
,
Surf. Interface Anal.
36
,
1550
(
2004
).
39.
L.
Marchetti
,
F.
Miserque
,
S.
Perrin
, and
M.
Pijolat
,
Surf. Interface Anal.
47
,
632
(
2015
).
40.
M.
Fingerle
,
S.
Tengeler
,
W.
Calvet
,
W.
Jaegermann
, and
T.
Mayer
,
J. Electrochem. Soc.
167
,
136514
(
2020
).
41.
M. C.
Biesinger
,
B. P.
Payne
,
A. P.
Grosvenor
,
L. W. M.
Lau
,
A. R.
Gerson
, and
R. St. C.
Smart
,
Appl. Surf. Sci.
257
,
2717
(
2011
).
42.
P.
Salunkhe
,
M. Ali
AV
, and
D.
Kekuda
,
Mater. Res. Express
7
,
016427
(
2020
).
43.
P. M.
Korusenko
,
E. V.
Knyazev
,
O. V.
Petrova
,
D. V.
Sokolov
,
S. N.
Povoroznyuk
,
K. E.
Ivlev
,
K. A.
Bakina
,
V. A.
Gaas
, and
A. S.
Vinogradov
,
Nanomaterials
14
,
699
(
2024
).
44.
Y. S.
Chen
et al,
J. Phys. D: Appl. Phys.
45
,
065303
(
2012
).
45.
F. A.
Stevie
and
C. L.
Donley
,
J. Vac. Sci. Technol. A
38
,
063204
(
2020
).
46.
S.
Ponmudi
,
R.
Sivakumar
,
C.
Sanjeeviraja
,
C.
Gopalakrishnan
, and
T.
Okamoto
,
J. Mater. Sci.: Mater. Electron.
31
,
10123
(
2020
).
47.
M.
Witthaut
,
R.
Cremer
,
K.
Reichert
, and
D.
Neuschütz
,
Microchim. Acta
133
,
191
(
2000
).
48.
P. M.
Korusenko
,
S. N.
Nesov
,
V. V.
Bolotov
,
S. N.
Povoroznyuk
,
Yu. A.
Sten'kin
,
A. I.
Pushkarev
,
E. O.
Fedorovskaya
, and
D. A.
Smirnov
,
J. Alloy Compd.
793
,
723
(
2019
).
49.
W.
Chen
,
X.
Pan
,
M.-G.
Willinger
,
D. S.
Su
, and
X.
Bao
,
J. Am. Chem. Soc.
128
,
3136
(
2006
).
50.
L.-M.
Berger
,
S.
Stolle
,
W.
Gruner
, and
K.
Wetzig
,
Int. J. Refract. Met. Hard Mater.
19
,
109
(
2001
).
51.
52.
P.
Hones
,
M.
Diserens
, and
F.
Lévy
,
Surf. Coat. Technol.
120–121
,
277
(
1999
).
53.
C.-S.
Cheng
,
H.
Gomi
, and
H.
Sakata
,
Phys. Status Solidi A
155
,
417
(
1996
).
54.
Md.
Julkarnain
,
J.
Hossain
,
K. S.
Sharif
, and
K. A.
Khan
,
J. Optoelectron. Adv. Mater.
13
,
485
(
2011
), see https://joam.inoe.ro/articles/temperature-effect-on-the-electrical-properties-of-chromium-oxide-cr2o3-thin-films/.
55.
S. tu
Zahra
,
W. A. A.
Syed
,
N.
Rafiq
,
W. H.
Shah
, and
Z.
Iqbal
,
Prot. Met. Phys. Chem. Surf.
57
,
321
(
2021
).
58.
A.
Polyakov
et al,
J. Appl. Phys.
131
,
215701
(
2022
).
59.
C.-H.
Sun
,
Du.-C.
Tsai
,
Z.-C.
Chang
,
E.-C.
Chen
, and
F.-S.
Shieu
,
Ceram. Int.
42
,
13697
(
2016
).
60.
K. A.
Vanaja
,
R. S.
Ajimsha
,
A. S.
Asha
, and
M. K.
Jayaraj
,
Appl. Phys. Lett.
88
,
212103
(
2006
).
61.
H.
Yanagi
,
S.-i.
Inoue
,
K.
Ueda
,
H.
Kawazoe
,
H.
Hosono
, and
N.
Hamada
,
J. Appl. Phys.
88
,
4159
(
2000
).
62.
H.
Sato
,
T.
Minami
,
S.
Takata
, and
T.
Yamada
,
Thin Solid Films
236
,
27
(
1993
).
63.
A.
Mallick
,
S.
Chattopadhyay
,
G.
De
, and
D.
Basak
,
J. Alloy Compd.
770
,
813
(
2019
).
You do not currently have access to this content.