Amorphous aluminum oxide (Al2O3) is a key material in optical coatings due to its notable properties, including a broad transparency window (ultraviolet to mid-infrared) and excellent durability. Moreover, its higher refractive index contrast relative to silica cladding layers and high solubility of rare-earth ions make it well suited for optical waveguides and the development of various functionalities in integrated photonics. In many coatings and integrated photonics applications, the substrates are temperature and stress sensitive, while relatively thick (∼1 μm) alumina layers are required; thus, it is crucial to fabricate low optical loss alumina thin films at low deposition temperatures, while maintaining high deposition rates. In this study, plasma-assisted reactive magnetron sputtering, operated in an alternating current mode, is investigated as a reliable, straightforward, and wafer-scale compatible technique for the deposition of high optical quality and uniform Al2O3 thin films at low temperature. One-micrometer-thick amorphous Al2O3 planar waveguides, deposited at 150 °C and a rate of 23.3 nm/min, exhibit optical losses below 1 dB/cm at 638 nm and as low as 0.1 dB/cm in the conventional optical communication band.

1.
A.
Piegari
and
F.
Flory
,
Optical Thin Film and Coatings—From Materials to Applications
(
Woodhead
,
Sawston, Cambridge
,
2013
).
2.
D.
Ristau
and
H.
Ehlers
,
Springer Handbook of Lasers and Optics—Thin Film Optical Coatings
(
Springer
,
New York
,
2007
).
3.
4.
J. M.
Fedeli
,
L.
Di Cioccio
,
D.
Marris-Morini
,
L.
Vivien
,
R.
Orobtchouk
,
P.
Rojo-Romeo
,
C.
Seassal
, and
F.
Mandorlo
,
Adv. Opt. Technol.
2008
,
412518
(
2008
).
7.
P. M.
Solomon
,
Annu. Rev. Mater. Sci.
30
,
681
(
2000
).
8.
J. J.
Díaz Leon
,
D. M.
Fryauf
,
J. E.
Volk
, and
N. P.
Kobayashi
,
IEEE Photonics Technol. Lett.
31
,
43
(
2019
).
9.
M. K.
Smit
,
G. A.
Acket
, and
C. J.
van der Laan
,
Thin Solid Films
138
,
171
(
1986
).
10.
S.
Garcia-Blanco
,
W.
Hendricks
,
D.
Bonneville
,
S.
Mardani
, and
M.
Dijkstra
, “UV integrated photonics in sputter deposited aluminum oxide,”
Opt. Open
(to be published).
11.
K.
Worhoff
,
F.
Ay
, and
M.
Pollnau
,
ECS Trans.
3
,
17
(
2006
).
12.
M. M.
Aslan
,
N. A.
Webster
,
C. L.
Byard
,
M. B.
Pereira
,
C. M.
Hayes
,
R. S.
Wiederkehr
, and
S. B.
Mendes
,
Thin Solid Films
518
,
4935
(
2010
).
13.
G. N.
West
,
W.
Loh
,
D.
Kharas
,
C.
Sorace-Agaskar
,
K. K.
Mehta
,
J.
Sage
,
J.
Chiaverini
, and
R. J.
Ram
,
APL Photonics
4
,
026101
(
2019
).
14.
W. A. P. M.
Hendriks
,
L.
Chang
,
C. I.
van Emmerik
,
J.
Mu
,
M.
de Goede
,
M.
Dijkstra
, and
S. M.
Garcia-Blanco
,
Adv. Phys. X
6
, 1 (
2021
).
15.
M.
de Goede
,
L.
Chang
,
J.
Mu
,
M.
Dijkstra
,
R.
Obregón
,
E.
Martínez
,
L.
Padilla
,
F.
Mitjans
, and
S. M.
Garcia-Blanco
,
Opt. Lett.
44
,
5937
(
2019
).
16.
J. D.
Bradley
,
R.
Stoffer
,
L.
Agazzi
,
F.
Ay
,
K.
Wörhoff
, and
M.
Pollnau
,
Opt. Lett.
35
,
73
(
2010
).
17.
K.
Wörhoff
,
J. D. B.
Bradley
,
F.
Ay
,
D.
Geskus
,
T. P.
Blauwendraat
, and
M.
Pollnau
,
IEEE J. Quantum Electron.
45
,
454
(
2009
).
18.
M.
Demirtas
,
C.
Odaci
,
N. K.
Perkgoz
,
C.
Sevik
, and
F.
Ay
,
IEEE J. Sel. Top. Quantum Electron.
24
,
1
(
2018
).
19.
C. I.
van Emmerik
et al,
Opt. Mater. Express
10
,
1451
(
2020
).
20.
T.
Ishizaka
,
Y.
Kurokawa
,
T.
Makino
, and
Y.
Segawa
,
Opt. Mater.
15
,
293
(
2001
).
21.
M.
Mahnke
,
S.
Wiechmann
,
H. J.
Heider
,
O.
Blume
, and
J.
Müller
,
AEU-Int. J. Electron. Commun.
55
,
342
(
2001
).
22.
S.
Chen
,
L.
Tao
,
L.
Zeng
, and
R.
Hong
,
Int. J. Photoenergy
2013
(1),
792357
(
2013
).
23.
S.
Shi
,
S.
Qian
,
X.
Hou
,
J.
Mu
,
J.
He
, and
X.
Chou
,
Adv. Condens. Matter Phys.
2018
(1),
7598978
(
2018
).
24.
G.
Angarita
,
C.
Palacio
,
M.
Trujillo
, and
M.
Arroyave
,
J. Phys.: Conf. Ser.
850
,
012022
(
2017
).
25.
R.
Wang
,
H. C.
Frankis
,
H. M.
Mbonde
,
D. B.
Bonneville
, and
J. D. B.
Bradley
,
Opt. Mater.
111
,
110692
(
2021
).
26.
Y.
Chiba
,
Y.
Abe
,
M.
Kawamura
, and
K.
Sasaki
,
Vacuum
83
,
483
(
2008
).
27.
D. B.
Bonneville
,
H. C.
Frankis
,
R.
Wang
, and
J. D. B.
Bradley
,
Opt. Express
28
,
30130
(
2020
).
28.
E. S.
Magden
et al,
Opt. Express
25
,
18058
(
2017
).
29.
J. W.
Miller
,
M.
Chesaux
,
D.
Deligiannis
,
P.
Mascher
, and
J. D. B.
Bradley
,
Thin Solid Films
709
,
138165
(
2020
).
30.
J.
Broßmann
,
M.
Lappschies
,
S.
Jakobs
, and
V.
Kirschner
,
Proc. SPIE
9627
,
962710
(
2015
).
31.
S. J.
Pearce
,
M. D. B.
Charlton
,
J.
Hiltunen
,
J.
Puustinen
,
J.
Lappalainen
, and
J. S.
Wilkinson
,
Surf. Coat. Technol.
206
,
4930
(
2012
).
32.
M.
Scherer
,
J.
Pistner
, and
W.
Lehnert
,
OSA Tech. Dig.
MA7
,
6
(
2010
).
33.
X.
Zhang
,
J.
Zhu
,
L.
Zhang
,
K.
Kishimoto
,
S. Y.
Du
, and
X.
Yin
,
Surf. Coat. Technol.
228
,
S393
(
2013
).
34.
K.
Strijckmans
,
R.
Schelfhout
, and
D.
Depla
,
J. Appl. Phys.
124
,
241101
(
2018
).
35.
J. T.
Gudmundsson
,
Plasma Sources Sci. Technol.
29
,
113001
(
2020
).
36.
S.
Berg
and
T.
Nyberg
,
Thin Solid Films
476
,
215
(
2005
).
37.
K.
Koski
,
J.
Hölsä
, and
P.
Juliet
,
Surf. Coat. Technol.
116–119
,
716
(
1999
).
38.
Y.
Lan
,
Y.
Zou
,
X.
Ma
,
L.
Xu
,
L.
Shi
, and
J.
Zhang
,
Mater. Res. Express
7
,
086405
(
2020
).
39.
Intlvac Thin Film
, “Nanochrome IV Thin Film Deposition System”; see https://intlvac.com/Systems/Thin-Film-Deposition/Nanochrome-IV (accessed 4 September 2024).
You do not currently have access to this content.