For next-generation superconducting radiofrequency (SRF) cavities, the interior walls of existing Nb SRF cavities are coated with a thin Nb3Sn film to improve the superconducting properties for more efficient, powerful accelerators. The superconducting properties of these Nb3Sn coatings are limited due to inhomogeneous growth resulting from poor nucleation during the Sn vapor diffusion procedure. To develop a predictive growth model for Nb3Sn grown via Sn vapor diffusion, we aim to understand the interplay between the underlying Nb oxide morphology, Sn coverage, and Nb substrate heating conditions on Sn wettability, intermediate surface phases, and eventual Nb3Sn nucleation. In this work, Nb-Sn intermetallic species are grown on a single crystal Nb(100) in an ultrahigh vacuum chamber equipped with in situ surface characterization techniques including scanning tunneling microscopy, Auger electron spectroscopy, and x-ray photoelectron spectroscopy. Sn adsorbate behavior on oxidized Nb was examined by depositing Sn with submonolayer precision on a Nb substrate held at varying deposition temperatures (Tdep). Experimental data of annealed intermetallic adlayers provide evidence of how Nb substrate oxidization and Tdep impact Nb-Sn intermetallic coordination. The presented experimental data contextualize how vapor and substrate conditions, such as the Sn flux and Nb surface oxidation, drive homogeneous Nb3Sn film growth during the Sn vapor diffusion procedure on Nb SRF cavity surfaces. This work, as well as concurrent growth studies of Nb3Sn formation that focus on the initial Sn nucleation events on Nb surfaces, will contribute to the future experimental realization of optimal, homogeneous Nb3Sn SRF films.

1.
R.
Porter
,
T.
Arias
,
P.
Cueva
,
D.
Hall
,
M.
Liepe
,
J.
Maniscalco
,
D.
Muller
, and
N.
Sitaraman
, “
Next generation Nb3Sn SRF cavities for linear accelerators
,” in
Proceedings of the 29th Linear Accelerator Conference
,
Geneva, Switzerland, Beijing, China, 2018
(JACOW Publishing, Geneva, Switzerland,
2019
), p.
462465
.
2.
J.
Tiskumara
,
J.
Delayen
,
G.
Eremeev
,
U.
Pudasaini
, and
C.
Reece
, “
Nb3Sn coating of twin axis cavity for SRF applications
,” in
Proceedings of the 20th International Conference on RF Superconductivity
,
East Lansing, MI, 2021
(JACOW Publishing, Geneva, Switzerland,
2022
), pp.
146
150
.
3.
J.
Carlson
et al,
Phys. Rev. B
103
,
024516
(
2021
).
4.
R. D.
Porter
,
D. L.
Hall
,
M.
Liepe
,
J. T.
Maniscalco
, and
C.
University
, “
Surface roughness effect on the performance of Nb3Sn cavities
,” in
Proceedings of the 28th Linear Accelerator Conference (LINAC’16)
,
East Lansing, MI, 2016
(JACOW Publishing, Geneva, Switzerland,
2017
), pp.
32
37
.
5.
A.
Godeke
,
Supercond. Sci. Technol.
19
,
R68
(
2006
).
6.
Y.
Trenikhina
,
S.
Posen
,
A.
Romanenko
,
M.
Sardela
,
J.-M.
Zuo
,
D. L.
Hall
, and
M.
Liepe
,
Supercond. Sci. Technol.
31
,
015004
(
2017
).
7.
J.
Lee
,
S.
Posen
,
Z.
Mao
,
Y.
Trenikhina
,
K.
He
,
D. L.
Hall
,
M.
Liepe
, and
D. N.
Seidman
,
Supercond. Sci. Technol.
32
,
024001
(
2018
).
8.
U.
Pudasaini
,
G.
Eremeev
,
M.
Kelley
,
C.
Reece
, and
J.
Tuggle
, “
Surface studies of Nb3Sn coated samples prepared under different coating conditions
,” in
Proceedings of the 18th International Conference on RF Superconductivity
,
Lanzhou, China, 2017
(JACOW Publishing, Geneva, Switzerland,
2018
), pp.
894
899
.
9.
T.
Spina
,
B. M.
Tennis
,
J.
Lee
,
D. N.
Seidman
, and
S.
Posen
,
Supercond. Sci. Technol.
34
,
015008
(
2020
).
10.
U.
Pudasaini
,
G. V.
Eremeev
,
J. W.
Angle
,
J.
Tuggle
,
C. E.
Reece
, and
M. J.
Kelley
,
J. Vac. Sci. Technol. A
37
,
051509
(
2019
).
11.
D.
Hall
,
New Insights into the Limitations on the Efficiency and Achievable Gradients in Nb3Sn SRF Cavities
(
Cornell University
,
Ithaca
,
2017
).
12.
R. D.
Veit
,
N. A.
Kautz
,
R. G.
Farber
, and
S. J.
Sibener
,
Surf. Sci.
688
,
63
(
2019
).
13.
H.
Oechsner
,
J.
Giber
,
H. J.
Füßer
, and
A.
Darlinski
,
Thin Solid Films
124
,
199
(
1985
).
14.
B. R.
King
,
H. C.
Patel
,
D. A.
Gulino
, and
B. J.
Tatarchuk
,
Thin Solid Films
192
,
351
(
1990
).
15.
J.
Halbritter
,
Electrochim. Acta
34
,
1153
(
1989
).
16.
J.
Halbritter
, “
Degradation of superconducting RF cavity performances by extrinsic properties
,” in
Proceedings of the 11th International Conference on RF Superconductivity
,
Lübeck/Travemünder, Germany, 2003
(JACOW Publishing, Geneva, Switzerland,
2003
), pp.
156
162
.
17.
R. E.
Einziger
,
J. N.
Mundy
, and
H. A.
Hoff
,
Phys. Rev. B
17
,
440
(
1978
).
18.
S. A.
Willson
,
R. G.
Farber
,
A. C.
Hire
,
R. G.
Hennig
, and
S. J.
Sibener
,
J. Phys. Chem. C
127
,
3339
(
2023
).
19.
R. G.
Farber
,
S. A.
Willson
, and
S. J.
Sibener
,
J. Vac. Sci. Technol. A
39
,
063212
(
2021
).
21.
M.
Ohring
,
The Material Science of Thin Films
(
Academic
,
San Diego
,
CA
,
1992
).
22.
J. F.
Moulder
,
Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
(
Physical Electronics Division, Perkin-Elmer Corporation
, Eden Prairie, MN,
1992
).
23.
Z.
Yang
,
X.
Lu
,
W.
Tan
,
J.
Zhao
,
D.
Yang
,
Y.
Yang
,
Y.
He
, and
K.
Zhou
,
Appl. Surf. Sci.
439
,
1119
(
2018
).
24.
D. D.
Sarma
and
C. N. R.
Rao
,
J. Electron Spectros. Relat. Phenomena
20
,
25
(
1980
).
25.
S. F.
Ho
,
S.
Contarini
, and
J. W.
Rabalais
,
J. Phys. Chem.
91
,
4779
(
1987
).
26.
A. S.
Razinkin
,
E. V.
Shalaeva
, and
M. V.
Kuznetsov
,
Phys. Met. Metallogr.
106
,
56
(
2008
).
27.
S.
Berman
,
A.
Zhussupbekova
,
B.
Walls
,
K.
Walshe
,
S. I.
Bozhko
,
A.
Ionov
,
D. D.
O’Regan
,
I. V.
Shvets
, and
K.
Zhussupbekov
,
Phys. Rev. B
107
,
165425
(
2023
).
28.
29.
B.
An
,
S.
Fukuyama
,
K.
Yokogawa
, and
M.
Yoshimura
,
Phys. Rev. B
68
,
115423
(
2003
).
30.
R. G.
Musket
,
W.
McLean
,
C. A.
Colmenares
,
D. M.
Makowiecki
, and
W. J.
Siekhaus
,
Appl. Surf. Sci.
10
,
143
(
1982
).
32.
M.
Bäumer
and
H.-J.
Freund
,
Prog. Surf. Sci.
61
,
127
(
1999
).
33.
D. G.
Van Campen
and
J.
Hrbek
,
J. Phys. Chem.
99
,
16389
(
1995
).
34.
D.
Marton
and
J.
Fine
,
Thin Solid Films
185
,
79
(
1990
).
35.
M. A.
Stranick
and
A.
Moskwa
,
Surf. Sci. Spectra
2
,
50
(
1993
).
36.
K. T.
Jacob
,
C.
Shekhar
,
M.
Vinay
, and
Y.
Waseda
,
J. Chem. Eng. Data
55
,
4854
(
2010
).
37.
E. G.
Lavut
,
B. I.
Timofeyev
,
V. M.
Yuldasheva
,
E. A.
Lavut
, and
G. L.
Galchenko
,
J. Chem. Thermodyn.
13
,
635
(
1981
).
38.
A.
Cano
,
G. V.
Eremeev
,
J. R.
Zuazo
,
J.
Lee
,
B.
Luo
,
M.
Martinello
,
A.
Romanenko
, and
S.
Posen
,
J. Phys. Chem. C
127
,
19705
(
2023
).
39.
Z.
Sun
,
D. K.
Dare
,
Z.
Baraissov
,
D. A.
Muller
,
M. O.
Thompson
, and
M. U.
Liepe
,
APL Mater.
11
,
071118
(
2023
).
40.
G.
Ciovati
,
Appl. Phys. Lett.
89
,
022507
(
2006
).
41.
E. M.
Lechner
,
J. W.
Angle
,
A. D.
Palczewski
,
F. A.
Stevie
,
M. J.
Kelley
, and
C. E.
Reece
,
J. Appl. Phys.
135
,
133902
(
2024
).
You do not currently have access to this content.