Supported transition metal oxide catalysts are extensively used as heterogeneous catalysts for various energy, chemical, and environmental applications. The molecular structures of dehydrated surface metal oxide phases are crucial for understanding structure-activity/selectivity relationships that guide the design of enhanced catalysts. Some early studies suggested that dimeric (aka binuclear) surface metal oxide sites were more active/selective than monomeric (aka mononuclear) sites, prompting interest in synthesizing catalysts with supported dimeric metal oxide structures. This review examines the literature on dehydrated silica-based supported group 7-5 MOx catalysts (ReOx, WOx, MoOx, CrOx, VOx, NbOx, and TaOx on SiO2, MCM-41, AlOx/SiO2, and H-ZSM-5) for their surface metal oxide structures. In situ Raman, extended x-ray absorption fine structure, and ultraviolet-visible spectroscopy indicate that monomeric surface MOx structures predominate in all such catalysts. Therefore, the cursory use of dimeric surface M2Ox sites in catalytic mechanisms and reaction models in heterogeneous catalysis by supported metal oxides is questionable, and moving forward, the invoking of supporting dimeric surface M2Ox sites should be critically examined and backed up with direct spectroscopic methods.

1.
M.
Hino
and
K.
Arata
, “
Synthesis of solid superacid of tungsten oxide supported on zirconia and its catalytic action for reactions of butane and pentane
,”
J. Chem. Soc. Chem. Commun.
1988
(18), 1259–1260 (
1988
).
2.
N.
Kosinov
,
F. J. a. G.
Coumans
,
E. A.
Uslamin
,
A. S. G.
Wijpkema
,
B.
Mezari
, and
E. J. M.
Hensen
,
ACS Catal.
7
,
520
(
2017
).
3.
H.
Zhang
,
L.
Wei
,
Y.
Sun
,
C.
Wang
,
Y.
Li
, and
R.
Li
,
ACS Catal.
14
,
11591
(
2024
).
4.
M.
Çağlayan
et al,
Catal. Sci. Technol.
13
,
2748
(
2023
).
5.
H.
Yu
,
S.
Mao
,
B.
Lu
,
H.
Wang
,
X.
Zhang
,
M.
Qi
,
R.
Gao
, and
Y.
Wang
,
ACS Catal.
14
,
8720
(
2024
).
6.
P.
Eversfield
,
T.
Lange
,
M.
Hunger
, and
E.
Klemm
,
Catal. Today
333
,
120
(
2019
).
7.
H.
Kamata
,
H.
Ohara
,
K.
Takahashi
,
A.
Yukimura
, and
Y.
Seo
,
Catal. Lett.
73
,
79
(
2001
).
8.
N. C.
Ramani
,
D. L.
Sullivan
,
J. G.
Ekerdt
,
J.-M.
Jehng
, and
I. E.
Wachs
,
J. Catal.
176
,
143
(
1998
).
10.
M.
Gierada
and
J.
Handzlik
,
J. Catal.
352
,
314
(
2017
).
11.
C. A.
Demmelmaier
,
R. E.
White
,
J. A.
Van Bokhoven
, and
S. L.
Scott
,
J. Catal.
262
,
44
(
2009
).
12.
M. P.
McDaniel
, “
Review of the Phillips Chromium Catalyst for Ethylene Polymerization
,” in
Handbook of Heterogeneous Catalysis
, edited by
G.
Ertl
,
H.
Knözinger
,
F.
Schüth
and
J.
Weitkamp
(
Wiley‐VCH Verlag GmbH & Co. KGaA
,
2008
).
13.
W.
Grünert
,
Urea-scr Technology for Denox After Treatment of Diesel Exhausts
, edited by
I.
Nova
and
E.
Tronconi
(
Springer New York
,
New York
,
2014
), p.
181
.
14.
W.
Zhou
,
E. I.
Ross-Medgaarden
,
W. V.
Knowles
,
M. S.
Wong
,
I. E.
Wachs
, and
C. J.
Kiely
,
Nat. Chem.
1
,
722
(
2009
).
15.
C.
Moisii
,
L. J.
Van De Burgt
, and
A. E.
Stiegman
,
Chem. Mater.
20
,
3927
(
2008
).
16.
S.
Yoshida
,
Y.
Nishimura
,
T.
Tanaka
,
H.
Kanai
, and
T.
Funabiki
,
Catal. Today
8
,
67
(
1990
).
17.
T.
Tanaka
,
H.
Nojima
,
T.
Yamamoto
,
S.
Takenaka
,
T.
Funabiki
, and
S.
Yoshida
,
Phys. Chem. Chem. Phys.
1
,
5235
(
1999
).
18.
C.
Moisii
,
E. W.
Deguns
,
A.
Lita
,
S. D.
Callahan
,
L. J.
Van De Burgt
,
D.
Magana
, and
A. E.
Stiegman
,
Chem. Mater.
18
,
3965
(
2006
).
19.
J.
Handzlik
,
K.
Kurleto
, and
M.
Gierada
,
ACS Catal.
11
,
13575
(
2021
).
20.
S.
Lwin
,
Y.
Li
,
A. I.
Frenkel
, and
I. E.
Wachs
,
ACS Catal.
6
,
3061
(
2016
).
21.
B.
Zhang
,
S.
Lwin
,
S.
Xiang
,
A. I.
Frenkel
, and
I. E.
Wachs
,
ACS Catal.
11
,
2412
(
2021
).
22.
H. S.
Lacheen
and
E.
Iglesia
,
J. Phys. Chem. B
110
,
5462
(
2006
).
23.
N.
Ichikuni
and
Y.
Iwasawa
,
Catal. Today
16
,
427
(
1993
).
24.
Y.
Cheng
,
L.
Zhou
,
J.
Xu
,
C.
Miao
,
W.
Hua
,
Y.
Yue
, and
Z.
Gao
,
Micropor. Mesopor. Mater.
234
,
370
(
2016
).
25.
Y.
Iwasawa
,
N.
Ito
,
H.
Ishii
, and
H.
Kuroda
, “
New SiO2-bound mo dimers: Active catalysts for selective oxidation of propene to acrylaldehyde
,”
J. Chem. Soc., Chem. Commun.
1985
, 827–828 (
1985
).
27.
D.
Zhou
,
Y.
Zhang
,
H.
Zhu
,
D.
Ma
, and
X.
Bao
,
J. Phys. Chem. C
111
,
2081
(
2007
).
28.
D. L.
Sullivan
,
R. D.
Roark
,
J. G.
Ekerdt
,
S. E.
Deutsch
, and
B. C.
Gates
,
J. Phys. Chem.
99
,
3678
(
1995
).
29.
R.
Nakamura
,
F.
Abe
, and
E.
Echigoya
,
Chem. Lett.
10
,
51
(
1981
).
30.
K.
Nakamoto
,
Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry
(
Wiley
,
New York
,
2008
).
31.
M. A.
Bañares
and
I. E.
Wachs
,
J. Raman Spectrosc.
33
,
359
(
2002
).
32.
H.
Tian
,
C. A.
Roberts
, and
I. E.
Wachs
,
J. Phys. Chem. C
114
,
14110
(
2010
).
33.
M.
De Boer
,
A. J.
Van Dillen
,
D. C.
Koningsberger
,
J. W.
Geus
,
M. A.
Vuurman
, and
I. E.
Wachs
,
Catal. Lett.
11
,
227
(
1991
).
34.
D. C.
Koningsberger
and
R.
Prins
,
X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES
(Wiley-Interscience,
1988
).
35.
J.
Finzel
,
K. M.
Sanroman Gutierrez
,
A. S.
Hoffman
,
J.
Resasco
,
P.
Christopher
, and
S. R.
Bare
,
ACS Catal.
13
,
6462
(
2023
).
36.
Y.
Tang
, Dissertation, Lehigh University, 2015, see https://asa.lib.lehigh.edu/Record/10612994.
37.
E. I.
Ross-Medgaarden
and
I. E.
Wachs
,
J. Phys. Chem. C
111
,
15089
(
2007
).
38.
X.
Gao
and
I. E.
Wachs
,
J. Phys. Chem. B
104
,
1261
(
2000
).
39.
I. R.
Beattie
and
G. A.
Ozin
,
J. Chem. Soc. A
1969
,
2615
(
1969
).
40.
J.-M.
Jehng
,
H.
Hu
,
X.
Gao
, and
I. E.
Wachs
,
Catal. Today
28
,
335
(
1996
).
41.
S.
Lwin
,
C.
Keturakis
,
J.
Handzlik
,
P.
Sautet
,
Y.
Li
,
A. I.
Frenkel
, and
I. E.
Wachs
,
ACS Catal.
5
,
1432
(
2015
).
42.
B.
Ding
,
S.
Huang
, and
W.
Wang
,
J. Mol. Struct.
851
,
207
(
2008
).
43.
H. S.
Lacheen
,
P. J.
Cordeiro
, and
E.
Iglesia
,
J. Am. Chem. Soc.
128
,
15082
(
2006
).
44.
W.
Ding
,
G. D.
Meitzner
,
D. O.
Marler
, and
E.
Iglesia
,
J. Phys. Chem. B
105
,
3928
(
2001
).
45.
D.
Kiani
,
S.
Sourav
,
Y.
Tang
,
J.
Baltrusaitis
, and
I. E.
Wachs
,
Chem. Soc. Rev.
50
,
1251
(
2021
).
46.
Y.
Zheng
,
Y.
Tang
,
J. R.
Gallagher
,
J.
Gao
,
J. T.
Miller
,
I. E.
Wachs
, and
S. G.
Podkolzin
,
J. Phys. Chem. C
123
,
22281
(
2019
).
47.
W.
Li
,
G. D.
Meitzner
,
R. W.
Borry
, and
E.
Iglesia
,
J. Catal.
191
,
373
(
2000
).
48.
A.
Chakrabarti
,
M.
Gierada
,
J.
Handzlik
, and
I. E.
Wachs
,
Top. Catal.
59
,
725
(
2016
).
49.
B. M.
Weckhuysen
,
R. A.
Schoonheydt
,
J.-M.
Jehng
,
I. E.
Wachs
,
S. J.
Cho
,
R.
Ryoo
,
S.
Kijlstra
, and
E.
Poels
,
J. Chem. Soc. Faraday Trans.
91
,
3245
(
1995
).
50.
M. K.
Jongkind
,
T.
Van Kessel
,
M. E. Z.
Velthoen
,
N.
Friederichs
, and
B. M.
Weckhuysen
,
ChemPhysChem
21
,
1665
(
2020
).
51.
J.
Gao
,
Y.
Zheng
,
Y.
Tang
,
J.-M.
Jehng
,
R.
Grybos
,
J.
Handzlik
,
I. E.
Wachs
, and
S. G.
Podkolzin
,
ACS Catal.
5
,
3078
(
2015
).
52.
N. M.
Peek
,
D. B.
Jeffcoat
,
C.
Moisii
,
L.
Van De Burgt
,
S.
Profeta
, Jr.
,
S. L.
Scott
, and
A. E.
Stiegman
,
J. Phys. Chem. C
122
,
4349
(
2018
).
53.
E. L.
Lee
and
I. E.
Wachs
,
J. Phys. Chem. C
111
,
14410
(
2007
).
54.
N.
Das
,
H.
Eckert
,
H.
Hu
,
I. E.
Wachs
,
J. F.
Walzer
, and
F. J.
Feher
,
J. Phys. Chem.
97
,
8240
(
1993
).
55.
S.
Yoshida
,
T.
Tanaka
,
T.
Hanada
,
T.
Hiraiwa
,
H.
Kanai
, and
T.
Funabiki
,
Catal. Lett.
12
,
277
(
1992
).
56.
N. R.
Jaegers
,
C.
Wan
,
M. Y.
Hu
,
M.
Vasiliu
,
D. A.
Dixon
,
E.
Walter
,
I. E.
Wachs
,
Y.
Wang
, and
J. Z.
Hu
,
J. Phys. Chem. C
121
,
6246
(
2017
).
57.
O. B.
Lapina
,
D. F.
Khabibulin
,
A. A.
Shubin
,
E.
Papulovskiy
,
V. V.
Terskikh
, and
I. E.
Wachs
,
Catal. Today
441
,
114880
(
2024
).
58.
X.
Gao
and
I. E.
Wachs
,
J. Catal.
192
,
18
(
2000
).
59.
X.
Gao
,
I. E.
Wachs
,
M. S.
Wong
, and
J. Y.
Ying
,
J. Catal.
203
,
18
(
2001
).
60.
J. M.
Jehng
and
I. E.
Wachs
,
Chem. Mater.
3
,
100
(
1991
).
61.
E.
Yuan
,
W.
Dai
,
G.
Wu
,
N.
Guan
, and
L.
Li
,
Micropor. Mesopor. Mater.
305
,
110361
(
2020
).
62.
J.-M.
Jehng
,
W.-C.
Tung
,
C.-H.
Huang
, and
I. E.
Wachs
,
Micropor. Mesopor. Mater.
99
,
299
(
2007
).
63.
Y.
Chen
,
J. L. G.
Fierro
,
T.
Tanaka
, and
I. E.
Wachs
,
J. Phys. Chem. B
107
,
5243
(
2003
).
64.
X.
Gao
,
S. R.
Bare
,
B. M.
Weckhuysen
, and
I. E.
Wachs
,
J. Phys. Chem. B
102
,
10842
(
1998
).
You do not currently have access to this content.