Photonic crystals built with 3D diamond structures have potentially large bandgaps, which can benefit a wide range of applications, such as daytime radiative cooling, where emissivity needs to be targeted at certain wavelengths in the infrared. However, building simple and low-cost 3D diamond-lattice photonic crystals remains a challenge. In this work, we develop a new processing technique to fabricate a 3D diamond-lattice photonic crystal based on a 110 surface-terminated structure to ease the creation of a deep lattice structure through reactive ion etching through the surface. This fabrication results in a significant amount of broadband selectivity, characterized by relatively high reflection in the visible wavelength range, as well as low reflection and high emissivity in the mid- to long-wavelength infrared range. Simulations performed in the Stanford Stratified Structure Solver indicate a reasonable agreement with experimental measurements, while suggesting approaches for further improvement.

1.
S. V.
Garimella
,
T.
Persoons
,
J.
Weibel
, and
L.-T.
Yeh
,
Appl. Energy
107
,
66
(
2013
).
2.
B.
Ding
,
Z.-H.
Zhang
,
L.
Gong
,
M.-H.
Xu
, and
Z.-Q.
Huang
,
Appl. Therm. Eng.
168
,
114832
(
2020
).
3.
Z.
He
,
Y.
Yan
, and
Z.
Zhang
,
Energy
216
,
119223
(
2021
).
4.
P. K.
Schelling
,
L.
Shi
, and
K. E.
Goodson
,
Mater. Today
8
,
30
(
2005
).
5.
E.
Pop
,
S.
Sinha
, and
K. E.
Goodson
,
Proc. IEEE
94
,
1587
(
2006
).
6.
Y. K.
Joshi
and
S. V.
Garimella
,
Microelectr. J.
34
,
169
(
2003
).
7.
Z.
Khattak
and
H. M.
Ali
,
Int. J. Heat Mass Transf.
130
,
141
(
2019
).
8.
C.
Bailey
, 2008 10th Electronics Packaging Technology Conference, Singapore, 9–12 December 2008 (IEEE, New York, 2008), pp. 527–532.
9.
Y.
Cengal
and
A.
Ghajar
,
Heat and Mass Transfer: Fundamentals & Applications
, 6th ed. (
McGraw-Hill Education
,
New York
,
2020
).
10.
B.
Zhao
,
M.
Hu
,
X.
Ao
,
N.
Chen
, and
G.
Pei
,
Appl. Energy
236
,
489
(
2019
).
11.
N.
Guo
,
Z.
Zhao
,
H.
Yan
, and
M.
Chen
,
Next Energy
1
,
100072
(
2023
).
12.
B.
Bitnar
,
W.
Durisch
,
J.-C.
Mayor
,
H.
Sigg
, and
H.
Tschudi
,
Sol. Energy Mater. Sol. Cells
73
,
221
(
2002
).
13.
L.
Peng
,
D.
Liu
,
H.
Cheng
,
S.
Zhou
, and
M.
Zu
,
Adv. Opt. Mater.
6
,
1801006
(
2018
).
14.
R.
Bhatt
,
I.
Kravchenko
, and
M.
Gupta
,
Sol. Energy
197
,
538
(
2020
).
15.
X.
Zhao
,
J.
Li
,
K.
Dong
, and
J.
Wu
,
ACS Nano
18
,
18118
(
2024
).
16.
A. P.
Raman
,
M. A.
Anoma
,
L.
Zhu
,
E.
Rephaeli
, and
S.
Fan
,
Nature
515
,
540
(
2014
).
17.
M. A.
Kecebas
,
M. P.
Menguc
,
A.
Kosar
, and
K.
Sendur
,
J. Quant. Spectrosc. Radiat.
198
,
179
(
2017
).
18.
Y.
Zhang
and
J.
Yu
,
ACS Appl. Nano Mater.
4
,
11260
(
2021
).
19.
M. I.
Iqbal
,
K.
Lin
,
F.
Sun
,
S.
Chen
,
A.
Pan
,
H. H.
Lee
,
C. W.
Kan
,
C. S. K.
Lin
, and
C. Y.
Tso
,
ACS Appl. Mater. Interfaces
14
,
23577
(
2022
).
20.
E.
Yablonovitch
,
T.
Gmitter
, and
K.-M.
Leung
,
Phys. Rev. Lett.
67
,
2295
(
1991
).
21.
U.
Biswas
,
J. K.
Rakshit
, and
C.
Nayak
,
Opt. Eng.
62
,
116101
(
2023
).
22.
J. D.
Joannopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals: Molding the Flow of Light
, 2nd ed. (
Princeton University Press
,
Princeton, NJ
,
2008
).
23.
I.
Zubel
,
J. Micromech. Microeng.
29
,
093002
(
2019
).
24.
V.
Liu
and
S.
Fan
,
Comput. Phys. Commun.
183
,
2233
(
2012
).
25.
C.
Schinke
et al.,
AIP Adv.
5
,
067168
(
2015
).
26.
C.
Bohling
and
W.
Sigmund
,
Silicon
8
,
339
(
2016
).
27.
S.
Wolf
,
Silicon Processing for the VLSI Era, Vol. 1: Process Technology
(
Lattice Press
,
Huntington Beach, CA
,
1986
).
29.
P.
Mukherjee
,
A.
Bruccoleri
,
R. K.
Heilmann
,
M. L.
Schattenburg
,
A. F.
Kaplan
, and
L. J.
Guo
,
J. Vac. Sci. Technol. B
28
,
C6P70
(
2010
).
30.
R.
Abdolvand
and
F.
Ayazi
,
Sens. Actuators, A
144
,
109
(
2008
).
31.
M.
Green
, and
M.
Keevers
,
Prog. Photovolt. Res. Appl.
3
,
189
(
1995
).
32.
M.
Green
,
Sol. Energy Mater. Sol. Cells
92
,
1305
(
2008
).
You do not currently have access to this content.