Etching of high aspect ratio features into alternating SiO2 and SiN layers is an enabling technology for the manufacturing of 3D NAND flash memories. In this paper, we study a low-temperature or cryo plasma etch process, which utilizes HF gas together with other gas additives. Compared with a low-temperature process that uses separate fluorine and hydrogen gases, the etching rate of the SiO2/SiN stack doubles. Both materials etch faster with this so-called second generation cryo etch process. Pure HF plasma enhances the SiN etching rate, while SiO2 requires an additional fluorine source such as PF3 to etch meaningfully. The insertion of H2O plasma steps into the second generation cryo etch process boosts the SiN etching rate by a factor of 2.4, while SiO2 etches only 1.3 times faster. We observe a rate enhancing effect of H2O coadsorption in thermal etching experiments of SiN with HF. Ammonium fluorosilicate (AFS) plays a salient role in etching of SiN with HF with and without plasma. AFS appears weakened in the presence of H2O. Density functional theory calculations confirm the reduction of the bonding energy when NH4F in AFS is replaced by H2O.

1.
S.
Park
et al,
IEEE Symposium on VLSI Technology Digest of Technical Papers 2021
,
Kyoto
13–19 June, 2021
(IEEE, 2021).
3.
S.
Huang
,
C.
Huard
,
S.
Shim
,
S. K.
Nam
,
I. C.
Song
,
S.
Lu
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
37
,
031304
(
2019
).
4.
M.
Shen
et al,
Jpn. J. Appl. Phys.
62
,
SI0801
(
2023
).
5.
Y.
Kihara
,
M.
Tomura
,
W.
Sakamoto
,
M.
Honda
, and
M.
Kojima
,
IEEE Symposium on VLSI Technology Digest of Technical Papers 2023
,
Kyoto
,
11–16 June, 2023
(IEEE, 2023).
7.
T.
Iwase
,
K.
Yokogawa
, and
M.
Mori
,
Jpn. J. Appl. Phys.
57
,
06JC03
(
2018
).
8.
T.
Lill
,
I. L.
Berry
,
M.
Shen
,
J.
Hoang
,
A.
Fischer
,
T.
Panagopoulos
,
J. P.
Chang
, and
V.
Vahedi
,
J. Vac. Sci. Technol. A
41
,
023005
(
2023
).
9.
S. N.
Hsiao
,
M.
Sekine
,
K.
Ishikawa
,
Y.
Iijima
,
Y.
Ohya
, and
M.
Hori
,
Appl. Phys. Lett.
123
,
212106
(
2023
).
10.
R. L.
Bersin
,
J. H.
Junkin
, and
R. F.
Reichelderfer
, U.S. patent 4,127,437 (28 November 1978).
11.
D. F.
Weston
and
R. J.
Mattox
,
J. Vac. Sci. Technol.
17
,
466
(
1980
).
12.
N.
Miki
,
H.
Kikuyama
,
I.
Kawanabe
,
M.
Miyashita
, and
T.
Ohmi
,
IEEE Trans. Electron Devices
37
,
107
(
1990
).
13.
C. R.
Helms
and
B. E.
Deal
,
J. Vac. Sci. Technol. A
10
,
806
(
1992
).
14.
K.
Torek
,
J.
Ruzyllo
,
R.
Grant
, and
R.
Novak
,
J. Electrochem. Soc.
142
,
1322
(
1995
).
15.
J. K.
Kang
and
C. B.
Musgrave
,
J. Chem. Phys.
116
,
275
(
2002
).
16.
C. S.
Lee
,
J. T.
Baek
,
H. J.
Yoo
, and
S. I.
Woo
,
J. Electrochem. Soc.
143
,
1099
(
1996
).
17.
T.
Hattori
et al,
Jpn. J. Appl. Phys.
62
,
SI1001
(
2023
).
18.
Y.-P.
Han
, “HF vapor etching and cleaning of silicon wafer surfaces,”
Ph.D. thesis
(
Massachusetts Institute of Technology
,
1999)
.
19.
S. M.
George
, private communication (2024).
20.
R.
Hidayat
,
H.-L.
Kim
,
K.
Khumaini
,
T.
Chowdhury
,
T. R.
Mayangsari
,
B.
Cho
,
S.
Park
, and
W.-J.
Lee
,
Phys. Chem. Chem. Phys.
25
,
3890
(
2023
).
21.
D. H.
Kim
,
S. J.
Kwak
,
J. H.
Jeong
,
S.
Yoo
,
S. K.
Nam
,
Y.
Kim
, and
W. B.
Lee
,
ACS Omega
6
,
16009
(
2021
).
22.
Y.
Hagimoto
,
H.
Ugajin
,
D.
Miyakoshi
,
H.
Iwamoto
,
Y.
Muraki
, and
T.
Orii
,
Solid State Phenom.
134
,
7
(
2007
).
23.
M.
Junige
and
S. M.
George
,
Chem. Mater.
36
,
6950
(
2024
).
24.
G.
Smolinsky
,
T. M.
Mayer
, and
E. A.
Truesdale
,
ECS J. Solid State Sci. Technol.
129
,
1770
(
1982
).
25.
H.
Nishino
,
N.
Hayasaka
, and
H.
Okano
,
J. Appl. Phys.
74
,
1345
(
1993
).
26.
H.
Ogawa
,
T.
Arai
,
M.
Yanagisawa
,
T.
Ichiki
, and
Y.
Horiike
,
Jpn. J. Appl. Phys.
41
,
5349
(
2002
).
27.
H.-T.
Kim
,
J.-S.
Lim
,
M.-S.
Kim
,
H.-J.
Oh
,
D.-H.
Ko
,
G.-D.
Kim
,
W.-G.
Shin
, and
J.-G.
Park
,
Microelectron. Eng.
135
,
17
(
2015
).
28.
J.
Ruzyllo
,
K.
Torek
,
C.
Daffron
,
R.
Grant
, and
R.
Novak
,
J. Electrochem. Soc.
140
,
L64
(
1993
).
29.
S.
Guillemin
,
P.
Mumbauer
,
H.
Radtke
,
M.
Fimberger
,
S.
Fink
,
J.
Kraxner
,
A.
Faes
, and
J.
Siegert
,
J. Microelectromech. Syst.
28
,
717
(
2019
).
30.
R.
Hidayat
et al,
J. Vac. Sci. Technol. A
41
,
032604
(
2023
).
31.
Y. J.
Gill
,
D. S.
Kim
,
H. S.
Gil
,
K. H.
Kim
,
Y. J.
Jang
,
Y. E.
Kim
, and
G. Y.
Yeom
,
Plasma Process Polym.
18
,
e2100063
(
2021
).
32.
N.
Miyoshi
,
K.
Shinoda
,
H.
Kobayashi
,
M.
Kurihara
,
Y.
Kouzuma
, and
M.
Izawa
,
J. Vac. Sci. Technol. A
40
,
012601
(
2022
).
33.
H. S.
Gil
,
D. S.
Kim
,
Y. J.
Jang
,
D. W.
Kim
,
H. I.
Kwon
,
G. C.
Kim
,
D. W.
Kim
, and
G. Y.
Yeom
,
Sci. Rep.
13
,
11599
(
2023
).
34.
G.
Vereecke
,
M.
Schaekers
,
K.
Verstraete
,
S.
Arnauts
,
M. M.
Heyns
, and
W.
Plante
,
J. Electrochem. Soc.
147
,
1499
(
2000
).
35.
H.-J.
Kwon
and
J.-G.
Park
,
J. Korean Phys. Soc.
81
,
903
(
2022
).
36.
K.
Khumaini
,
Y.
Kim
,
R.
Hidayat
,
T.
Chowdhury
,
H.-L.
Kim
,
B.
Cho
,
S.
Park
, and
W.-J.
Lee
,
Appl. Surf. Sci.
654
,
159414
(
2024
).
37.
W. R.
Knolle
and
R. D.
Huttemann
,
J. Electrochem. Soc.
135
,
2574
(
1988
).
38.
S.-N.
Hsiao
,
M.
Sekine
, and
M.
Hori
,
ACS Appl. Mater. Interfaces
15
,
35622
(
2023
).
39.
S.-N.
Hsiao
,
N.
Britun
,
T.
Nguyen
,
M.
Sekine
, and
M.
Hori
,
ACS Appl. Electron. Mater.
5
,
6797
(
2023
).
40.
K.
Shinoda
,
M.
Izawa
,
T.
Kanekiyo
,
K.
Ishikawa
, and
M.
Hori
,
Appl. Phys. Express
9
,
106201
(
2016
).
41.
M.
Saito
,
H.
Eto
,
N.
Makino
,
K.
Omiya
,
T.
Homma
, and
T.
Nagatomo
,
Jpn. J. Appl. Phys.
40
,
5271
(
2001
).
42.
Y.
Kataoka
,
S.-I.
Saito
, and
K.
Omiya
,
J. Electrochem. Soc.
146
,
3435
(
1999
).
43.
J. E.
Jung
,
Y.
Barsukov
,
V.
Volynets
,
G.
Kim
,
S. K.
Nam
,
K.
Han
,
S.
Huang
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
38
,
023008
(
2020
).
44.
P. A.
Pankratiev
,
Y. V.
Barsukov
,
A. A.
Kobelev
,
A. Y.
Vinogradov
,
I. V.
Miroshnikov
, and
A. S.
Smirnov
,
J. Phys.: Conf. Ser.
1697
,
012222
(
2020
).
46.
A.
Lii-Rosales
,
A. S.
Cavanagh
,
A.
Fischer
,
T.
Lill
, and
S. M.
George
,
Chem. Mater.
33
,
7719
(
2021
).
47.
D. M.
Knotter
,
J. Am. Chem. Soc.
122
,
4345
(
2000
).
48.
49.
T. C.
Allison
, NIST-JANAF Thermochemical Tables—SRD 13 (2013).
You do not currently have access to this content.