A global zero-dimensional (0D) model has been developed to describe the Cl2/Ar plasma discharge in dynamic mode. Our model computes the time evolution of the plasma composition under conditions similar to fast-paced plasma processes, such as atomic layer etching (ALE), characterized by alternations in the feed gas. The study focuses on calculating the densities of charged and neutral species for various gas switch durations, ( t s). Simulations demonstrate the impact of gas switching time ( t s) on the temporal evolution of Cl2, Cl, and ion densities, as well as the electron temperature ( T e) during the gas switch. A parametric study reveals that the temporal evolution of T e can be represented by a semiempirical exponential law during the transition from a pure Cl2 plasma to Ar as a function of ( t s). During the gas switch, the extinction of chlorinated species, which plays a crucial role in the adsorption step in ALE, persist during the argon plasma phase. The duration of this extinction decreases with longer t s. Finally, our model shows a good reproducibility of ALE cycles modeled for the chosen input parameters, including the densities of neutral and charged species and T e, relative to the ALE period. This work aims to provide insights into the kinetics of transient plasmas occurring in the ALE cycle, the importance of purging, and lifetime residual species, such as residual chlorine in a plasma with pure argon.

1.
V. M.
Donnelly
and
A.
Kornblit
,
J. Vac. Sci. Technol. A
31
,
050825
(
2013
).
2.
W.
Saito
,
M.
Kuraguchi
,
Y.
Takada
,
K.
Tsuda
,
I.
Omura
, and
T.
Ogura
,
IEEE Trans. Electron Devices
52
,
159
(
2005
).
3.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
4.
T.
Matsuura
,
J.
Murota
,
Y.
Sawada
, and
T.
Ohmi
,
Appl. Phys. Lett.
63
,
2803
(
1993
).
5.
S. D.
Athavale
and
D. J.
Economou
,
J. Vac. Sci. Technol. A
14
,
3702
(
1996
).
6.
S.
Tan
,
W.
Yang
,
K. J.
Kanarik
,
T.
Lill
,
V.
Vahedi
,
J.
Marks
, and
R. A.
Gottscho
,
ECS J. Solid State Sci. Technol.
4
,
N5010
(
2015
).
7.
A.
Goodyear
and
M.
Cooke
,
J. Vac. Sci. Technol. A
35
,
01A105
(
2017
).
8.
Q.
Hao
,
P.
Kim
,
S. K.
Nam
,
S.-Y.
Kang
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. A
41
,
032605
(
2023
).
9.
A.
Fathzadeh
,
P.
Bezard
,
M.
Darnon
,
I.
Manders
,
T.
Conard
,
I.
Hoflijk
,
F.
Lazzarino
, and
S.
de Gendt
,
J. Vac. Sci. Technol. A
42
,
033006
(
2024
).
10.
T.
Ohba
,
W.
Yang
,
S.
Tan
,
K. J.
Kanarik
, and
K.
Nojiri
,
Jpn. J. Appl. Phys.
56
,
06HB06
(
2017
).
11.
H.
Fukumizu
,
M.
Sekine
,
M.
Hori
,
K.
Kanomaru
, and
T.
Kikuchi
,
J. Vac. Sci. Technol. A
37
,
021002
(
2019
).
12.
T. J.
Sommerer
and
M. J.
Kushner
,
J. Vac. Sci. Technol. B
10
,
2179
(
1992
).
13.
C.-C.
Hsu
,
M. A.
Nierode
,
J. W.
Coburn
, and
D. B.
Graves
,
J. Phys. D: Appl. Phys.
39
,
3272
(
2006
).
14.
B.
Ramamurthi
and
D. J.
Economou
,
J. Vac. Sci. Technol. A
20
,
467
(
2002
).
15.
C. S.
Corr
,
E.
Despiau-Pujo
,
P.
Chabert
,
W. G.
Graham
,
F. G.
Marro
, and
D. B.
Graves
,
J. Phys. D: Appl. Phys.
41
,
185202
(
2008
).
16.
S.
Ashida
,
C.
Lee
, and
M. A.
Lieberman
,
J. Vac. Sci. Technol. A
13
,
2498
(
1995
).
17.
R.
Chanson
,
A.
Rhallabi
,
M. C.
Fernandez
,
C.
Cardinaud
, and
J. P.
Landesman
,
J. Vac. Sci. Technol. A
31
,
011301
(
2013
).
18.
R.
Chanson
,
A.
Rhallabi
,
M. C.
Fernandez
, and
C.
Cardinaud
,
Plasma Processes and Polymers
10
,
213
(
2013
).
19.
A.
Rhallabi
,
R.
Chanson
,
J.-P.
Landesman
,
C.
Cardinaud
, and
M.-C.
Fernandez
,
Eur. Phys. J. Appl. Phys.
53
,
33606
(
2011
).
20.
S. C.
McNevin
,
J. Vac. Sci. Technol. B
8
,
1185
(
1990
).
21.
E.
Despiau-Pujo
,
M.
Brihoum
,
P.
Bodart
,
M.
Darnon
, and
G.
Cunge
,
J. Phys. D: Appl. Phys.
47
,
455201
(
2014
).
22.
G.-H.
Kim
,
A.
Efremov
,
D.-P.
Kim
, and
C.-I.
Kim
,
Microelectron. Eng.
81
,
96
(
2005
).
23.
A.
Efremov
,
G.-H.
Kim
,
J.-G.
Kim
,
A.
Bogomolov
, and
C.-I.
Kim
,
Vacuum
81
,
669
(
2007
).
24.
S.
Kawano
,
K.
Nanbu
, and
J.
Kageyama
,
J. Phys. D: Appl. Phys.
33
,
2637
(
2000
).
25.
S.
Huang
and
J. T.
Gudmundsson
,
Plasma Sources Sci. Technol.
22
,
055020
(
2013
).
26.
S.
Huang
and
J. T.
Gudmundsson
,
IEEE Trans. Plasma Sci.
42
,
2854
(
2014
).
27.
G.
Le Dain
et al., “
Etching of iron and iron-chromium alloys using ICP-RIE chlorine plasma
,”
Plasma Sources Sci. Technol.
30
,
095022
(
2021
).
28.
P. J.
Chantry
,
J. Appl. Phys.
62
,
1141
(
1987
).
29.
E. G.
Thorsteinsson
and
J. T.
Gudmundsson
,
Plasma Sources Science and Technology
19
,
015001
(
2010
).
30.
K.
Radhakrishnan
and
C.
Hindmarsh
, ““Description and use of LSODE, the Livermore solver for ordinary differential equations,” LLNL report UCRL-ID-113855 (LLNL, 1993).
31.
E. G.
Thorsteinsson
and
J. T.
Gudmundsson
,
J. Phys. D: Appl. Phys.
43
,
115201
(
2010
).
32.
G.
Franz
,
J. Vac. Sci. Technol. A
23
,
369
(
2005
).
33.
N. C. M.
Fuller
,
I. P.
Herman
, and
V. M.
Donnelly
,
J. Appl. Phys.
90
,
3182
(
2001
).
34.
C.
Mannequin
,
C.
Vallée
,
K.
Akimoto
,
T.
Chevolleau
,
C.
Durand
,
C.
Dussarrat
,
T.
Teramoto
,
E.
Gheeraert
, and
H.
Mariette
,
J. Vac. Sci. Technol. A
38
,
032602
(
2020
).
35.
S.
Tinck
,
W.
Boullart
, and
A.
Bogaerts
,
Plasma Sources Sci. Technol.
20
,
045012
(
2011
).
36.
T. J.
Flack
,
B. N.
Pushpakaran
, and
S. B.
Bayne
,
J. Electron. Mater.
45
,
2673
(
2016
).
37.
J.
Ladroue
,
A.
Meritan
,
M.
Boufnichel
,
P.
Lefaucheux
,
P.
Ranson
, and
R.
Dussart
,
J. Vac. Sci. Technol. A
28
,
1226
(
2010
).
38.
T.
List
,
T.
Ma
,
P.
Arora
,
V. M.
Donnelly
, and
S.
Shannon
,
Plasma Sources Sci. Technol.
28
,
025005
(
2019
).
39.
P.
Cosby
and
H.
Helm
, “Dissociation rates of diatomic molecules,” U.S. Air Force Material Command, Wright Patterson AFB (1992).
You do not currently have access to this content.