Great interest is shown toward atomic layer etching (ALE) processes due to the better control of the etching process and higher selectivity that they can offer. In order to obtain these benefits, the ALE steps must be self-limited. In the case of SiO2 ALE, the passivation step often relies on the deposition of a fluorocarbon film on the surface of SiO2. This reaction is not self-limited, which can lead to a drift of the amount of material etched per cycle with the increasing number of cycles. The drift of these processes can be detected through thickness measurements, but this is often not available in situ in manufacturing tools. For this reason, this study focuses on finding a way to detect the drift of these processes using optical emission spectroscopy (OES) that is more likely available in situ in manufacturing tools. Results presented in this paper first characterize the drift of quasi-ALE of thermal SiO2 using spectroscopic ellipsometry and x-ray photoelectron spectroscopy. OES spectra are then studied to identify a marker of the drift of the process in agreement with previous measurements. The drift of the process is found to be dependent on the durations of the deposition and activation steps. The intensity of the line of emission at a wavelength of 251 nm, attributed to CF or CF2, is found to be a marker of the drift of the process.

1.
G. S.
Oehrlein
,
D.
Metzler
, and
C.
Li
,
ECS J. Solid State Sci. Technol.
4
,
N5041
(
2015
).
2.
V. M.
Donnelly
and
A.
Kornblit
,
J. Vac. Sci. Technol. A
31
,
050825
(
2013
).
3.
S. J.
Pearton
and
D. P.
Norton
,
Plasma Process. Polym.
2
,
16
(
2005
).
4.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol.
33
,
020802
(
2015
).
5.
Ch.
Cardinaud
and
G.
Turban
,
Appl. Surf. Sci.
45
,
109
(
1990
).
6.
G. S.
Oehrlein
,
G. J.
Coyle
,
J. C.
Tsang
,
R. M.
Tromp
,
J. G.
Clabes
, and
Y. H.
Lee
,
MRS Proc.
68
,
367
(
1986
).
7.
G. S.
Oehrlein
and
Y. H.
Lee
,
J. Vac. Sci. Technol. A
5
,
1585
(
1987
).
8.
G. S.
Oehrlein
and
H. L.
Williams
,
J. Appl. Phys.
62
,
662
(
1987
).
9.
N. R.
Rueger
,
M. F.
Doemling
,
M.
Schaepkens
,
J. J.
Beulens
,
T. E. F. M.
Standaert
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
17
,
2492
(
1999
).
10.
M.
Schaepkens
,
T. E. F. M.
Standaert
,
N. R.
Rueger
,
P. G. M.
Sebel
,
G. S.
Oehrlein
, and
J. M.
Cook
,
J. Vac. Sci. Technol. A
17
,
26
(
1999
).
11.
T. E. F. M.
Standaert
,
M.
Schaepkens
,
N. R.
Rueger
,
P. G. M.
Sebel
,
G. S.
Oehrlein
, and
J. M.
Cook
,
J. Vac. Sci. Technol. A
16
,
239
(
1998
).
12.
D.
Zhang
and
M. J.
Kushner
,
J. Appl. Phys.
87
,
1060
(
2000
).
13.
D.
Metzler
,
R. L.
Bruce
,
S.
Engelmann
,
E. A.
Joseph
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
32
,
020603
(
2014
).
14.
D.
Metzler
et al,
J. Vac. Sci. Technol. A
34
,
01B102
(
2016
).
15.
D.
Metzler
,
C.
Li
,
S.
Engelmann
,
R. L.
Bruce
,
E. A.
Joseph
, and
G. S.
Oehrlein
,
J. Chem. Phys.
146
,
052801
(
2017
).
16.
C. M.
Huard
,
S.
Sriraman
,
A.
Paterson
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
36
,
06B101
(
2018
).
17.
C. M.
Herzinger
,
B.
Johs
,
W. A.
McGahan
,
J. A.
Woollam
, and
W.
Paulson
,
J. Appl. Phys.
83
,
3323
(
1998
).
18.
S. W.
Robey
and
G. S.
Oehrlein
,
Surf. Sci.
210
,
429
(
1989
).
19.
J. A.
Taylor
,
G. M.
Lancaster
,
A.
Ignatiev
, and
J. W.
Rabalais
,
J. Chem. Phys.
68
,
1776
(
1978
).
20.
J. F.
Watts
and
J.
Wolstenholme
,
An Introduction to Surface Analysis by XPS and AES
(
Wiley
,
New York
,
2008
).
21.
L.
Fauquier
,
B.
Pelissier
,
D.
Jalabert
,
F.
Pierre
,
D.
Doloy
,
C.
Beitia
, and
T.
Baron
,
Surf. Interface Anal.
48
,
436
(
2016
).
You do not currently have access to this content.