Managing the hardness, density, and residual stress of the titanium nitride (TiN) hard mask has become increasingly significant for achieving excellent selectivity in the high aspect ratio etching process. This research investigates the enhancement of hardness, density, residual stress, and etch selectivity of a TiN film during the atomic layer deposition process using varying NH3 flow rates. Additionally, the study establishes a correlation between the improvement of hard mask properties and NH3 flow rates, taking into account the film composition, crystallinity, surface roughness, interface layers, and film thickness. The effects of NH3 could be summarized into three types. High N–N and Ti–N bonds, along with increased film hardness, are achieved by elevating the NH3 flow rate. Furthermore, this adjustment promotes the growth of crystal planes with higher lattice constants and modifies the interface layer thickness between Si and TiN, directly impacting residual stress. The TiN film exhibits increased roughness and decreased uniformity. In addition, at NH3 50 SCCM, hardness, density, and residual stress improved by 81.8%, 110%, and 87.5%, respectively. The selectivity saw a significant increase of 77.7%. This study provides an analysis of the relationship between the NH3 flow rate and TiN thin film properties, which is essential for improving TiN hard mask properties in flow type reactors.

1.
Y.
Li
and
K. N.
Quader
,
Computer
46
,
23
(
2013
).
2.
H.
Kim
,
S. J.
Ahn
,
Y. G.
Shin
,
K.
Lee
, and
E.
Jung
, in
2017 IEEE International Memory Workshop (IMW)
, Monterey, CA, 14–17 May 2017 (
IEEE
,
New York
,
2017
), p.
1
.
3.
G. H.
Lee
,
S.
Hwang
,
J.
Yu
, and
H.
Kim
,
Appl. Sci.
11
,
6703
(
2021
).
4.
Y. T.
Oh
,
K. B.
Kim
,
S. H.
Shin
,
H.
Sim
,
N.
Van Toan
,
T.
Ono
, and
Y.
Song
,
Microelectron. J.
79
,
1
(
2018
).
5.
M.
Miyake
,
N.
Negishi
,
M.
Izawa
,
K.
Yokogawa
,
M.
Oyama
, and
T.
Kanekiyo
,
Jpn. J. Appl. Phys.
48
,
08HE01
(
2009
).
6.
W. J.
Mitchell
,
B. J.
Thibeault
,
D. D.
John
, and
T. E.
Reynolds
,
J. Vac. Sci. Technol. A
39
,
043204
(
2021
).
7.
P.
Patsalas
,
C.
Charitidis
,
S.
Logothetidis
,
C. A.
Dimitriadis
, and
O.
Valassiades
,
J. Appl. Phys.
86
,
5296
(
1999
).
8.
M. K.
Samani
,
X. Z.
Ding
,
N.
Khosravian
,
B.
Amin-Ahmadi
,
Y.
Yi
,
G.
Chen
,
E. C.
Neyts
,
A.
Bogaerts
, and
B. K.
Tay
,
Thin Solid Films
578
,
133
(
2015
).
9.
R. V.
Babinova
,
V. V.
Smirnov
,
A. S.
Useenov
,
K. S.
Kravchuk
,
E. V.
Gladkikh
,
V. I.
Shapovalov
, and
I. L.
Mylnikov
,
J. Phys.: Conf. Ser.
872
,
012035
(
2017
).
10.
N. K.
Ponon
,
D. J. R.
Appleby
,
E.
Arac
,
P. J.
King
,
S.
Ganti
,
K. S. K.
Kwa
, and
A.
O'Neill
,
Thin Solid Films
578
,
31
(
2015
).
11.
A. S.
Roberts
,
M.
Chirumamilla
,
D.
Wang
,
L.
An
,
K.
Pedersen
,
N. A.
Mortensen
, and
S. I.
Bozhevolnyi
,
Opt. Mater. Express
8
,
3717
(
2018
).
12.
K.
Ding
,
D.
Fomra
,
A. V.
Kvit
,
H.
Morkoç
,
N.
Kinsey
,
Ü
Özgür
, and
V.
Avrutin
,
Adv. Photonics
2
,
2000210
(
2021
).
13.
M. G.
Gusmão Cacho
,
K.
Benotmane
,
A.
Le Pennec
,
C.
Bouet
,
P.
Pimenta-Barros
,
G.
Rademaker
,
M.
Argoud
,
R.
Tiron
, and
N.
Possémé
,
J. Vac. Sci. Technol. A
39
,
033004
(
2021
).
14.
X.
Zhang
,
Z.
Zeng
,
Y.
Cao
,
Y.
Zhang
,
Y.
Bao
,
H.
Zhou
,
J.
Fang
, and
Y.
Zhang
, in
2022 China Semiconductor Technology International Conference (CSTIC 2022)
, Shanghai, China, 20–21 June 2022 (
IEEE
,
Piscataway, NJ
,
2022
), pp. 370–373.
15.
M.
Wittling
,
A.
Bendavid
,
P. J.
Martin
, and
M. V.
Swain
,
Thin Solid Films
270
,
283
(
1995
).
16.
T.
Bhushan
,
A.
Chandrashekhar
,
S. V.
Prasat
, and
I. R.
Reddy
,
IOP Conf. Ser. Mater. Sci. Eng.
981
,
042022
(
2020
).
17.
E.
Ramanathan
et al, in
2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2019)
, Saratoga Springs, NY, 6–9 May 2019 (
IEEE
,
Piscataway, NJ
,
2019
), pp.
42
45
.
18.
D.
Kim
,
E. A.
Hudson
,
D.
Cooperberg
,
E.
Edelberg
, and
M.
Srinivasan
,
Thin Solid Films
515
,
4874
(
2007
).
19.
L.
Liechao
,
J.
Kang
, and
J.
Wen
,
ECS Trans.
44
,
481
(
2012
).
20.
H. S.
Cheon
,
K. H.
Yoon
,
M. S.
Kim
,
S. B.
Oh
,
J. Y.
Song
,
N.
Tokareva
,
J. S.
Kim
, and
T.
Chang
,
Proc. SPIE
7140
,
71402R
(
2008
).
21.
B. S.
Kwon
,
J. S.
Kim
,
N.-E.
Lee
, and
J. W.
Shon
,
J. Electrochem. Soc.
157
,
D135
(
2010
).
22.
K. P.
Kim
,
W. S.
Song
,
M. K.
Park
, and
S. J.
Hong
,
J. Nanosci. Nanotechnol.
21
,
2032
(
2021
).
23.
J.
Musschoot
,
Q.
Xie
,
D.
Deduytsche
,
S.
Van den Berghe
,
R. L.
Van Meirhaeghe
, and
C.
Detavernier
,
Microelectron. Eng.
86
,
72
(
2009
).
24.
G.
Cho
and
S. W.
Rhee
,
J. Vac. Sci. Technol. A
31
,
01A117
(
2013
).
25.
Q.
Guo
,
Y.
Xie
,
X.
Wang
,
S.
Lv
,
T.
Hou
, and
C.
Bai
,
J. Am. Ceram. Soc.
88
,
249
(
2005
).
27.
M. D.
Thouless
,
J. Vac. Sci. Technol. A
9
,
2510
(
1991
).
28.
P. M.
Korusenko
,
S. N.
Nesov
,
S. N.
Povoroznyuk
,
P. V.
Orlov
,
D. N.
Korotaev
,
K. N.
Poleschenko
, and
E. E.
Tarasov
,
Data Brief
27
,
104737
(
2019
).
29.
G. R.
Panghulan
,
M. R.
Vasquez
,
Y. D.
Edañol
,
N.
Chanlek
, and
L. M.
Payawan
,
J. Vac. Sci. Technol. B
38
,
062203
(
2020
).
30.
P. D.
Lomenzo
,
Q.
Takmeel
,
C.
Zhou
,
C. M.
Fancher
,
E.
Lambers
,
N. G.
Rudawski
,
J. L.
Jones
,
S.
Moghaddam
, and
T.
Nishida
,
J. Appl. Phys.
117
,
134105
(
2015
).
31.
P. H.
Mayrhofer
,
H.
Clemens
, and
C.
Mitterer
,
Int. J. Mater. Res.
96
,
468
(
2022
).
32.
G.
Abadias
,
A.
Michel
,
C.
Tromas
,
C.
Jaouen
, and
S. N.
Dub
,
Surf. Coat. Technol.
202
,
844
(
2007
).
33.
L. C.
Tien
and
Y. J.
Chen
,
Appl. Surf. Sci.
258
,
3584
(
2012
).
You do not currently have access to this content.