This paper investigates parameter estimation of rate constants appearing in chemical mechanisms. As most chemical mechanisms are more complex than can be supported by available laboratory measurements, model reduction is a required first step. The quasisteady-state assumption and the reaction equilibrium assumption are presented as the two main model reduction methods. Reliable quantification of the approximate confidence intervals of the estimated parameters is a second key step. A brief overview of current numerical software for this purpose is provided. Parameter estimation with a starting mechanism and typically available simulated laboratory measurements is then applied to three illustrative example systems: (i) an electrochemical oxygen reduction reaction, (ii) butene isomerization by a metathesis mechanism, and (iii) enzymatic kinetics taking place in bacterial microcompartments. The reliability of the model reduction techniques and the current computational software is assessed based on the outcomes of these three example chemistries. In all three examples, the quasisteady-state assumption was required to remove some large rate constants governing low concentration, highly reactive species that could not be measured. After the model reduction, the parameter confidence intervals were then used to determine what extra measurements were required to identify the model, or the model was reparameterized to obtain an identifiable reduced set of parameters for the given measurements.

1.
J. B.
Rawlings
and
J. G.
Ekerdt
,
Chemical Reactor Analysis and Design Fundamentals
, 2nd ed. (
Nob Hill Publishing
,
Santa Barbara, CA
,
2020
), p.
664
, ISBN: 978-0-9759377-4-7.
2.
C. F.
Curtiss
and
J. O.
Hirschfelder
,
Proc. Natl. Acad. Sci. U. S. A.
38
,
235
(
1952
).
4.
T.
Haigh
, “Alan J. Hindmarsh. Oral history interview,” (2005); see: https://history.siam.org/oralhistories/hindmarsh.htm.
5.
G. D.
Byrne
,
A. C.
Hindmarsh
,
K. R.
Jackson
, and
H. G.
Brown
,
Comput. Chem. Eng.
1
,
133
(
1977
).
6.
G. D.
Byrne
and
A. C.
Hindmarsh
,
J. Comput. Phys.
70
,
1
(
1987
).
7.
A. C.
Hindmarsh
,
P. N.
Brown
,
K. E.
Grant
,
S. L.
Lee
,
R.
Serban
,
D. E.
Shumaker
, and
C. S.
Woodward
,
ACM Trans. Math. Softw.
31
,
363
(
2005
).
8.
L. R.
Petzold
, in Scientific Computing, edited by R. S. Stepleman (North-Holland, Amsterdam, 1983), pp. 65–68.
9.
K. E.
Brenan
,
S. L.
Campbell
, and
L. R.
Petzold
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
(
Elsevier Science
,
New York
,
1989
).
11.
Y.
Bard
,
Nonlinear Parameter Estimation
(
Academic
,
New York
,
1974
).
12.
G. A. F.
Seber
and
C. J.
Wild
,
Nonlinear Regression
(
John Wiley & Sons
,
Nashville TN
,
1989
).
13.
W. E.
Stewart
and
M.
Caracotsios
,
Computer-aided Modeling of Reactive Systems
(
John Wiley
,
Hoboken, NJ
,
2008
).
15.
M.
Caracotsios
and
W. E.
Stewart
,
Comput. Chem. Eng.
9
,
359
(
1985
).
16.
W. E.
Stewart
,
M.
Caracotsios
, and
J. P.
Sørensen
,
AIChE J.
38
,
641
(
1992
).
17.
L. T.
Biegler
,
J. J.
Damiano
, and
G. E.
Blau
,
AIChE J.
32
,
29
(
1986
).
18.
V. M.
Zavala
and
L. T.
Biegler
,
Ind. Eng. Chem. Res.
45
,
7867
(
2006
).
19.
W.
Chen
and
L. T.
Biegler
,
AIChE J.
66
,
e16242
(
2020
).
20.
W.
Chen
,
B.
Wang
, and
L. T.
Biegler
,
Comput. Chem. Eng.
157
,
107601
(
2022
).
23.
J. A.
Andersson
and
J. B.
Rawlings
,
IFAC-PapersOnLine
51
,
331
(
2018
).
25.
J. A. E.
Andersson
,
J.
Gillis
,
G.
Horn
,
J. B.
Rawlings
, and
M.
Diehl
,
Math. Program. Comput.
11
,
1
(
2019
).
26.
C.
Zhu
,
S.
Fu
,
Q.
Shi
,
D.
Du
, and
Y.
Lin
,
Angew. Chem. Int. Ed.
56
,
13944
(
2017
).
27.
J. T.
Mefford
,
Z.
Zhao
,
M.
Bajdich
, and
W. C.
Chueh
,
Energy Environ. Sci.
13
,
622
(
2020
).
28.
W.
Xing
,
G.
Yin
, and
J.
Zhang
,
Rotating Electrode Methods and Oxygen Reduction Electrocatalysts
(
Elsevier
,
Amsterdam
,
2014
).
29.
N. M.
Wang
et al.,
J. Am. Chem. Soc.
144
,
18526
(
2022
).
30.
C. A.
Kerfeld
,
C.
Aussignargues
,
J.
Zarzycki
,
F.
Cai
, and
M.
Sutter
,
Nat. Rev. Microbiol.
16
,
277
(
2018
).
31.
N. W.
Kennedy
,
C. E.
Mills
,
T. M.
Nichols
,
C. H.
Abrahamson
, and
D.
Tullman-Ercek
,
Curr. Opin. Microbiol.
63
,
36
(
2021
).
32.
C. S.
Crowley
,
D.
Cascio
,
M. R.
Sawaya
,
J. S.
Kopstein
,
T. A.
Bobik
, and
T. O.
Yeates
,
J. Biol. Chem.
285
,
37838
(
2010
).
33.
M.
Yang
,
D. M.
Simpson
,
N.
Wenner
,
P.
Brownridge
,
V. M.
Harman
,
J. C.
Hinton
,
R. J.
Beynon
, and
L.-N.
Liu
,
Nat. Commun.
11
,
1976
(
2020
).
34.
35.
C. M.
Jakobson
,
D.
Tullman-Ercek
,
M. F.
Slininger
, and
N. M.
Mangan
,
PLoS Comput. Biol.
13
,
e1005525
(
2017
).
36.
L.
Michaelis
and
M. L.
Menten
,
Biochem. Z.
49
,
333
(
1913
).
37.
G. E.
Briggs
and
J. B. S.
Haldane
,
Biochem. J.
19
,
338
(
1925
).
38.
D. L.
Nelson
and
M. M.
Cox
,
Lehninger Principles of Biochemistry
, 3rd ed. (
Worth Publishers
,
New York
,
2000
).
You do not currently have access to this content.