The impact of electrode spacing, power supply voltage, radio frequency, and gas pressure on capacitively coupled plasma discharge under both weak and strong magnetic fields is investigated by using a one-dimensional implicit particle-in-cell/Monte Carlo collision simulation. Simulation results indicate that under both weak and strong magnetic field conditions, plasma density increases with the increase in these discharge parameters. However, the principle of density increase under weak and strong magnetic field conditions is slightly different. The strong magnetic field plays a crucial role in strongly constraining electrons. Under weak magnetic field conditions, the mutual transition between stochastic heating and ohmic heating can be observed, while under strong magnetic field conditions, ohmic heating predominantly prevails. Furthermore, the simulation results also indicate that a strong magnetic field can effectively reduce the voltage threshold for the transition from the α mode to the γ mode. The strong magnetic field strongly confines secondary electrons near the sheath, allowing them to interact multiple times with the sheath and acquire higher energy, thereby making the γ mode more likely to occur.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley
,
Hoboken
,
2005
).
2.
F. F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion
(
Springer
,
New York
,
1984
), Vol. 1.
3.
S.
You
,
S.
Kim
,
J.-H.
Kim
,
D.-J.
Seong
,
Y.-H.
Shin
, and
H.-Y.
Chang
,
Appl. Phys. Lett.
91
,
221501
(
2007
).
4.
F.
Gao
,
Y.-R.
Zhang
,
S.-X.
Zhao
, and
Y.-N.
Wang
,
Phys. Plasmas
21
,
083507
(
2014
).
5.
D.
Eremin
,
R. P.
Brinkmann
, and
T.
Mussenbrock
,
Plasma Process. Polym.
14
,
1600164
(
2017
).
6.
H.
You
,
L.
Yeong-Min
,
L.
Jun-Ho
,
K.
Ju-Ho
,
L.
Moo-Young
, and
C.-W.
Chung
,
Plasma Sci. Technol.
25
,
045401
(
2023
).
7.
Y.-Y.
Wen
,
Y.-R.
Zhang
,
G.
Jiang
,
Y.-H.
Song
, and
Y.-N.
Wang
,
AIP Adv.
9
,
055019
(
2019
).
8.
S.
Wilczek
,
J.
Trieschmann
,
J.
Schulze
,
E.
Schuengel
,
R. P.
Brinkmann
,
A.
Derzsi
,
I.
Korolov
,
Z.
Donkó
, and
T.
Mussenbrock
,
Plasma Sources Sci. Technol.
24
,
024002
(
2015
).
9.
L.
Jiankai
,
Y.
Zhang
,
Z.
Kai
,
W.
Deqi
, and
W.
Younian
,
Plasma Sci. Technol.
23
,
035401
(
2021
).
10.
S. J.
Doyle
,
A. R.
Gibson
,
R. W.
Boswell
,
C.
Charles
, and
J. P.
Dedrick
,
Plasma Sources Sci. Technol.
29
,
124002
(
2020
).
11.
L.
Wang
,
P.
Hartmann
,
Z.
Donkó
,
Y.-H.
Song
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
30
,
054001
(
2021
).
12.
E.
Schüngel
,
Z.
Donkó
, and
J.
Schulze
,
Plasma Process. Polym.
14
,
1600117
(
2017
).
13.
D. A.
Schulenberg
,
I.
Korolov
,
Z.
Donkó
,
A.
Derzsi
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
30
,
105003
(
2021
).
14.
C.
Wild
and
P.
Koidl
,
Jpn. J. Appl. Phys.
69
,
2909
(
1991
).
15.
K.
Zhao
,
Z.-X.
Su
,
J.-R.
Liu
,
Y.-X.
Liu
,
Y.-R.
Zhang
,
J.
Schulze
,
Y.-H.
Song
, and
Y.-N.
Wang
,
Plasma Sources Sci. Technol.
29
,
124001
(
2020
).
16.
S.
You
,
G.
Park
,
J.
Kwon
,
J.
Kim
,
H.-Y.
Chang
,
J.
Lee
,
D.
Seong
, and
Y.
Shin
,
Appl. Phys. Lett.
96
,
101504
(
2010
).
17.
S.
You
et al.,
Thin Solid Films
519
,
6981
(
2011
).
18.
S.
Patil
,
S.
Sharma
,
S.
Sengupta
,
A.
Sen
, and
I.
Kaganovich
,
Phys. Rev. Res.
4
,
013059
(
2022
).
19.
J.-Y.
Sun
,
Q.-Z.
Zhang
,
J.
Schulze
, and
Y.-N.
Wang
,
Plasma Sources Sci. Technol.
31
,
045011
(
2022
).
20.
S.
You
,
S.
Kim
, and
H.-Y.
Chang
,
Appl. Phys. Lett.
85
,
4872
(
2004
).
21.
S.
Sharma
,
I. D.
Kaganovich
,
A. V.
Khrabrov
,
P.
Kaw
, and
A.
Sen
,
Phys. Plasmas
25
,
080704
(
2018
).
22.
M.
Oberberg
,
J.
Kallähn
,
P.
Awakowicz
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
27
,
105018
(
2018
).
23.
Y.-Q.
Guo
,
J.-Y.
Sun
,
Q.-Z.
Zhang
,
F.-F.
Ma
,
X.-M.
Liu
, and
Y.-N.
Wang
,
Plasma Process. Polym.
18
,
2100072
(
2021
).
24.
J.-Y.
Kim
,
H.-C.
Lee
,
Y.-D.
Kim
,
Y.-C.
Kim
, and
C.-W.
Chung
,
Phys. Plasmas
20
,
101612
(
2013
).
25.
L.
Wenbin
,
J.
Chenggang
,
G.
Jian
,
Y.
Zhang
, and
E.
Peng
,
Plasma Sci. Technol.
23
,
115401
(
2021
).
26.
T.
Haiyun
,
T.
Huang
,
J.
Peiyu
,
L.
Zhuge
, and
W.
Xuemei
,
Plasma Sci. Technol.
24
,
105403
(
2022
).
27.
V.
Vahedi
,
G.
DiPeso
,
C.
Birdsall
,
M.
Lieberman
, and
T.
Rognlien
,
Plasma Sources Sci. Technol.
2
,
261
(
1993
).
28.
V.
Vahedi
,
C.
Birdsall
,
M.
Lieberman
,
G.
DiPeso
, and
T.
Ronhlien
,
Plasma Sources Sci. Technol.
2
,
273
(
1993
).
29.
C. K.
Birdsall
,
IEEE Trans. Plasma Sci.
19
,
65
(
1991
).
30.
B. I.
Cohen
,
A. B.
Langdon
, and
A.
Friedman
,
J. Comput. Phys.
46
,
15
(
1982
).
31.
A. B.
Langdon
,
B. I.
Cohen
, and
A.
Friedman
,
J. Comput. Phys.
51
,
107
(
1983
).
32.
B.
Horváth
,
M.
Daksha
,
I.
Korolov
,
A.
Derzsi
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
26
,
124001
(
2017
).
33.
A.
Phelps
and
Z. L.
Petrovic
,
Plasma Sources Sci. Technol4.
8
,
R21
(
1999
).
34.
E.
Kawamura
,
M.
Lieberman
,
A.
Lichtenberg
, and
P.
Chabert
,
Plasma Sources Sci. Technol.
30
,
035001
(
2021
).
35.
M.
Daksha
,
A.
Derzsi
,
S.
Wilczek
,
J.
Trieschmann
,
T.
Mussenbrock
,
P.
Awakowicz
,
Z.
Donkó
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
26
,
085006
(
2017
).
36.
C.-K.
Kim
,
Korean J. Chem. Eng.
21
,
746
(
2004
).
37.
V.
Godyak
,
R.
Piejak
, and
B.
Alexandrovich
,
Plasma Sources Sci. Technol.
1
,
36
(
1992
).
You do not currently have access to this content.