On-chip photonic devices based on SiO 2 are of interest for applications such as microresonator gyroscopes and microwave sources. Although SiO 2 microdisk resonators have achieved quality factors exceeding one billion, this value remains an order of magnitude less than the intrinsic limit due to surface roughness scattering. Atomic layer etching (ALE) has potential to mitigate this scattering because of its ability to smooth surfaces to sub-nanometer length scales. While isotropic ALE processes for SiO 2 have been reported, they are not generally compatible with commercial reactors, and the effect on surface roughness has not been studied. Here, we report an ALE process for SiO 2 using sequential exposures of Al(CH3)3 (trimethylaluminum) and Ar/H2/SF6 plasma. We find that each process step is self-limiting, and that the overall process exhibits perfect synergy, with neither isolated half-cycle resulting in etching. We observe etch rates up to 0.58 Å per cycle for thermally grown SiO 2 and higher rates for ALD, plasma enhanced chemical vapor deposition, and sputtered SiO 2 up to 2.38 Å per cycle. Furthermore, we observe a decrease in surface roughness by 62% on a roughened film. The residual concentration of Al and F is around 1%–2%, which can be further decreased by O2 plasma treatment. This process could find applications in smoothing of SiO 2 optical devices and thereby enabling device quality factors to approach limits set by intrinsic dissipation.

1.
G. S.
Oehrlein
,
D.
Metzler
, and
C.
Li
,
ECS J. Solid State Sci. Technol.
4
,
N5041
(
2015
).
2.
C.
Fang
,
Y.
Cao
,
D.
Wu
, and
A.
Li
,
Prog. Nat. Sci.: Mater. Int.
28
,
667
(
2018
).
4.
T.
Lill
,
Atomic Layer Processing: Semiconductor Dry Etching Technology
(
Wiley
,
Weinheim, Germany
,
2021
), Chap. 4.
5.
A.
Fischer
,
A.
Routzahn
,
S. M.
George
, and
T.
Lill
,
J. Vac. Sci. Technol. A
39
,
030801
(
2021
).
6.
A.
Fischer
and
T.
Lill
,
Phys. Plasmas
30
,
080601
(
2023
).
7.
K. J.
Kanarik
,
S.
Tan
, and
R. A.
Gottscho
,
J. Phys. Chem. Lett.
9
,
4814
(
2018
).
8.
S. H.
Gerritsen
,
N. J.
Chittock
,
V.
Vandalon
,
M. A.
Verheijen
,
H. C. M.
Knoops
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
ACS Appl. Nano Mater.
5
,
18116
(
2022
).
9.
C.-W.
Chen
,
W.-H.
Cho
,
C.-Y.
Chang
,
C.-Y.
Su
,
N.-N.
Chu
,
C.-C.
Kei
, and
B.-R.
Li
,
J. Vac. Sci. Technol. A
41
,
012602
(
2022
).
10.
A.
Pacco
,
Y.
Akanishi
,
Q. T.
Le
,
E.
Kesters
,
G.
Murdoch
, and
F.
Holsteyns
,
Microelectron. Eng.
217
,
111131
(
2019
).
11.
Y.
Gong
,
K.
Venkatraman
, and
R.
Akolkar
,
J. Electrochem. Soc.
165
,
D282
(
2018
).
12.
E.
Mohimi
,
X. I.
Chu
,
B. B.
Trinh
,
S.
Babar
,
G. S.
Girolami
, and
J. R.
Abelson
,
ECS J. Solid State Sci. Technol.
7
,
P491
(
2018
).
13.
R.
Sheil
,
J. M. P.
Martirez
,
X.
Sang
,
E. A.
Carter
, and
J. P.
Chang
,
J. Phys. Chem. C
125
,
1819
(
2021
).
14.
N. R.
Johnson
and
S. M.
George
,
ACS Appl. Mater. Interfaces
9
,
34435
(
2017
).
15.
W.
Xie
,
P. C.
Lemaire
, and
G. N.
Parsons
,
ACS Appl. Mater. Interfaces
10
,
9147
(
2018
).
16.
S. D.
Athavale
and
D. J.
Economou
,
J. Vac. Sci. Technol. B
14
,
3702
(
1996
).
17.
S. D.
Park
,
D. H.
Lee
, and
G. Y.
Yeom
,
Electrochem. Solid-State Lett.
8
,
C106
(
2005
).
18.
S. D.
Park
,
C. K.
Oh
,
J. W.
Bae
,
G. Y.
Yeom
,
T. W.
Kim
,
J. I.
Song
, and
J. H.
Jang
,
Appl. Phys. Lett.
89
,
043109
(
2006
).
19.
K. K.
Ko
and
S. W.
Pang
,
J. Vac. Sci. Technol. B
11
,
2275
(
1993
).
20.
Y.
Aoyagi
,
K.
Shinmura
,
K.
Kawasaki
,
T.
Tanaka
,
K.
Gamo
,
S.
Namba
, and
I.
Nakamoto
,
Appl. Phys. Lett.
60
,
968
(
1992
).
21.
T.
Meguro
,
M.
Ishii
,
K.
Kodama
,
Y.
Yamamoto
,
K.
Gamo
, and
Y.
Aoyagi
,
Thin Solid Films
225
,
136
(
1993
).
22.
K.
Min
,
S.
Kang
,
J.
Kim
,
Y.
Jhon
,
M.
Jhon
, and
G.
Yeom
,
Microelectron. Eng.
110
,
457
(
2013
).
23.
Y.
Lee
,
C.
Huffman
, and
S. M.
George
,
Chem. Mater.
28
,
7657
(
2016
).
24.
J.
Hennessy
,
C. S.
Moore
,
K.
Balasubramanian
,
A. D.
Jewell
,
K.
France
, and
S.
Nikzad
,
J. Vac. Sci. Technol. A
35
,
041512
(
2017
).
25.
N. J.
Chittock
,
M. F. J.
Vos
,
T.
Faraz
,
W. M. M. E.
Kessels
,
H. C. M.
Knoops
, and
A. J. M.
Mackus
,
Appl. Phys. Lett.
117
,
162107
(
2020
).
26.
D.
Metzler
,
R. L.
Bruce
,
S.
Engelmann
,
E. A.
Joseph
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
32
,
020603
(
2013
).
27.
S. S.
Kaler
,
Q.
Lou
,
V. M.
Donnelly
, and
D. J.
Economou
,
J. Phys. D: Appl. Phys.
50
,
234001
(
2017
).
28.
K.
Koh
,
Y.
Kim
,
C.-K.
Kim
, and
H.
Chae
,
J. Vac. Sci. Technol. A
36
,
01B106
(
2017
).
29.
K.-Y.
Lin
,
C.
Li
,
S.
Engelmann
,
R. L.
Bruce
,
E. A.
Joseph
,
D.
Metzler
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
38
,
032601
(
2020
).
30.
A. A.
Hossain
,
H.
Wang
,
D. S.
Catherall
,
M.
Leung
,
H. C. M.
Knoops
,
J. R.
Renzas
, and
A. J.
Minnich
,
J. Vac. Sci. Technol. A
41
,
062601
(
2023
).
31.
X.
Yi
,
Q.-F.
Yang
,
K. Y.
Yang
,
M.-G.
Suh
, and
K.
Vahala
,
Optica
2
,
1078
(
2015
).
32.
L.
Wu
,
H.
Wang
,
Q.
Yang
,
Q.
xin Ji
,
B.
Shen
,
C.
Bao
,
M.
Gao
, and
K.
Vahala
,
Opt. Lett.
45
,
5129
(
2020
).
33.
L.
Wu
,
M.
Gao
,
J.-Y.
Liu
,
H.-J.
Chen
,
K.
Colburn
,
H. A.
Blauvelt
, and
K. J.
Vahala
,
Opt. Lett.
48
,
3511
(
2023
).
34.
H.
Lee
,
T.
Chen
,
J.
Li
,
K. Y.
Yang
,
S.
Jeon
,
O.
Painter
, and
K. J.
Vahala
,
Nat. Photonics
6
,
369
(
2012
).
35.
Y.
Cho
,
Y.
Kim
,
S.
Kim
, and
H.
Chae
,
J. Vac. Sci. Technol. A
38
,
022604
(
2020
).
36.
N.
Miyoshi
,
H.
Kobayashi
,
K.
Shinoda
,
M.
Kurihara
,
K.
Kawamura
,
Y.
Kouzuma
, and
M.
Izawa
,
J. Vac. Sci. Technol. A
40
,
012601
(
2021
).
37.
H.
Ohtake
,
N.
Miyoshi
,
K.
Shinoda
,
S.
Fujisaki
, and
Y.
Yamaguchi
,
Jpn. J. Appl. Phys.
62
,
SG0801
(
2023
).
38.
Y. J.
Gill
,
D. S.
Kim
,
H. S.
Gil
,
K. H.
Kim
,
Y. J.
Jang
,
Y. E.
Kim
, and
G. Y.
Yeom
,
Plasma Processes Polym.
18
,
2100063
(
2021
).
39.
H. S.
Gil
,
D. S.
Kim
,
Y. J.
Jang
,
D. W.
Kim
,
H. I.
Kwon
,
G. C.
Kim
,
D. W.
Kim
, and
G. Y.
Yeom
,
Sci. Rep.
13
,
11599
(
2023
).
40.
J. W.
DuMont
,
A. E.
Marquardt
,
A. M.
Cano
, and
S. M.
George
,
ACS Appl. Mater. Interfaces
9
,
10296
(
2017
).
41.
R.
Rahman
,
E. C.
Mattson
,
J. P.
Klesko
,
A.
Dangerfield
,
S.
Rivillon-Amy
,
D. C.
Smith
,
D.
Hausmann
, and
Y. J.
Chabal
,
ACS Appl. Mater. Interfaces
10
,
31784
(
2018
).
42.
V.
Volynets
,
Y.
Barsukov
,
G.
Kim
,
J.-E.
Jung
,
S. K.
Nam
,
K.
Han
,
S.
Huang
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
38
,
023007
(
2020
).
43.
P. A.
Pankratiev
,
Y. V.
Barsukov
,
A. A.
Kobelev
,
A. Y.
Vinogradov
,
I. V.
Miroshnikov
, and
A. S.
Smirnov
,
J. Phys.: Conf. Ser.
1697
,
012222
(
2020
).
44.
C. M.
Herzinger
,
B.
Johs
,
W. A.
McGahan
,
J. A.
Woollam
, and
W.
Paulson
,
J. Appl. Phys.
83
,
3323
(
1998
).
45.
N. I. of Standards and Technology
, “NIST x-ray photoelectron spectroscopy database” (last accessed 4 April 2024) (2000).
46.
J. A.
Murdzek
and
S. M.
George
,
J. Vac. Sci. Technol. A
38
,
022608
(
2020
).
47.
J. A.
Murdzek
,
A.
Rajashekhar
,
R. S.
Makala
, and
S. M.
George
,
J. Vac. Sci. Technol. A
39
,
042602
(
2021
).
48.
M. F.
Ceiler
,
P. A.
Kohl
, and
S. A.
Bidstrup
,
J. Electrochem. Soc.
142
,
2067
(
1995
).
49.
L.
Šimurka
,
R.
Čtvrtlík
,
J.
Tomaštík
,
G.
Bektaş
,
J.
Svoboda
, and
K.
Bange
,
Chem. Pap.
72
,
2143
(
2018
).
50.
G.
Dingemans
,
C. V.
Helvoirt
,
M. V.
de Sanden
, and
W. M.
Kessels
,
ECS Trans.
35
,
191
(
2011
).
51.
K.
Taniguchi
,
M.
Tanaka
,
C.
Hamaguchi
, and
K.
Imai
,
J. Appl. Phys.
67
,
2195
(
1990
).
52.
M. L.
Gorodetsky
,
A. A.
Savchenkov
, and
V. S.
Ilchenko
,
Opt. Lett.
21
,
453
(
1996
).
You do not currently have access to this content.