The possibilities of optimization of the two-step atomic layer etching process for HfO2 in conventional plasma etching tools were studied. The surface modification step was realized in Ar/CF4/H2 plasma, and the reaction between the modified layer and the surface was activated by Ar ion bombardment from the plasma in the second step. Investigation of the effects of activation step duration, DC bias during activation, and Ar plasma density was carried out. The mechanism of the etching process has been shown to involve fluorination of oxide during the modification step and subsequent removal of fluorine-containing particles at the activation step. An increase in parasitic sputtering rate and lower process saturation with the growth of DC bias during activation was demonstrated. The advantage of the ALE process in lower surface roughness over the conventional etching process was shown. Similar etching characteristics of HfO2 and ZrO2 suggest a similarity in the etching process for the mixed hafnium-zirconium oxide material.

1.
J.
Park
,
W.
Lim
,
B.
Park
,
I.
Park
,
Y.
Kim
, and
G.
Yeom
,
J. Phys. D: Appl. Phys.
42
,
055202
(
2009
).
2.
O. O.
Permiakova
,
A. E.
Rogozhin
,
A. V.
Miakonkikh
,
E. A.
Smirnova
, and
K. V.
Rudenko
,
Microelectron. Eng.
275
,
111983
(
2023
).
3.
Y.-L.
Zhu
,
K.-H.
Xue
,
X.-M.
Cheng
,
C.
Qiao
,
J.-H.
Yuan
,
L.-H.
Li
, and
X.-S.
Miao
,
Appl. Surf. Sci.
550
,
149274
(
2021
).
4.
A. G.
Isaev
,
O. О.
Permyakova
, and
A. Е.
Rogozhin
,
Thin Solid Films
781
,
139993
(
2023
).
5.
M.
Tarkov
,
F.
Tikhonenko
,
V.
Popov
,
V.
Antonov
,
A.
Miakonkikh
, and
K.
Rudenko
,
Nanomaterials
12
,
4488
(
2022
).
6.
A.
Chouprik
,
V.
Mikheev
,
E.
Korostylev
,
M.
Kozodaev
,
S.
Zarubin
,
D.
Vinnik
,
S.
Gudkova
, and
D.
Negrov
,
Nanomaterials
13
,
2825
(
2023
).
7.
A.
Chouprik
et al,
Nanomaterials
13
,
3063
(
2023
).
8.
V.
Kuzmenko
,
Y.
Lebedinskij
,
A.
Miakonkikh
, and
K.
Rudenko
,
Vacuum
207
,
111585
(
2023
).
9.
A.
Fischer
and
T.
Lill
,
Phys. Plasmas
30
,
080601
(
2023
).
10.
Y.
Kim
,
H.
Kang
,
H.
Ha
,
C.
Kim
,
S.
Cho
, and
H.
Chae
,
Appl. Surf. Sci.
627
,
157309
(
2023
).
11.
Y.
Kim
,
H.
Kang
,
H.
Ha
,
M.
Choi
,
M.
Jeon
,
S. M.
Cho
, and
H.
Chae
,
Plasma Process. Polym.
21
(3),
e2300161
(
2023
).
12.
S. Y.
Kim
,
I.-S.
Park
, and
J.
Ahn
,
Appl. Surf. Sci.
589
,
153045
(
2022
).
13.
J.-H.
Kim
,
S.-W.
Cho
,
C. J.
Park
,
H.
Chae
, and
C.-K.
Kim
,
Thin Solid Films
637
,
43
(
2017
).
14.
G.
Choi
,
A.
Efremov
,
D.-K.
Lee
,
C.-H.
Cho
, and
K.-H.
Kwon
,
Vacuum
216
,
112484
(
2023
).
15.
A.
Osipov
,
A.
Gagaeva
,
A.
Speshilova
,
A.
Osipov
,
Y.
Enns
,
A.
Kazakin
,
E.
Endiiarova
,
R.
Kornilov
, and
S.
Alexandrov
,
J. Vac. Sci. Technol. A
41
,
033007
(
2023
).
16.
Z.
Yue
,
H.
Shen
, and
Y.
Jiang
,
Appl. Surf. Sci.
271
,
402
(
2013
).
17.
J.
Chen
,
W. J.
Yoo
,
Z. Y. L.
Tan
,
Y.
Wang
, and
D. S. H.
Chan
,
J. Vac. Sci. Technol. A
22
,
1552
(
2004
).
18.
J.-C.
Woo
,
G.-H.
Kim
,
D.-P.
Kim
,
D.-S.
Um
, and
C.-I.
Kim
,
Ferroelectrics
384
,
47
(
2009
).
19.
L.
Hamraoui
,
T.
Zhang
,
A.
Crespi
,
P.
Lefaucheux
,
T.
Tillocher
,
M.
Boufnichel
, and
R.
Dussart
,
J. Vac. Sci. Technol. A
41
,
032602
(
2023
).
20.
T.
Tsutsumi
,
H.
Kondo
,
M.
Hori
,
M.
Zaitsu
,
A.
Kobayashi
,
T.
Nozawa
, and
N.
Kobayashi
,
J. Vac. Sci. Technol. A
35
,
01A103
(
2017
).
21.
S.-N.
Hsiao
,
M.
Sekine
, and
M.
Hori
,
ACS Appl. Mater. Interfaces
15
,
35622
(
2023
).
22.
A. V.
Miakonkikh
,
V. O.
Kuzmenko
,
A. M.
Efremov
, and
K. V.
Rudenko
,
Rus. Microelectron.
53
(
1
),
70
(
2024
).
23.
M.
Konh
,
Y.
Wang
,
H.
Chen
,
S.
Bhatt
,
J. Q.
Xiao
, and
A. V.
Teplyakov
,
Appl. Surf. Sci.
575
,
151751
(
2022
).
24.
M.
Konh
,
A.
Janotti
, and
A.
Teplyakov
,
J. Phys. Chem. C
125
,
7142
(
2021
).
25.
S.
Kaler
,
Q.
Lou
,
V.
Donnelly
, and
D.
Economou
,
J. Phys. D: Appl. Phys.
50
,
234001
(
2017
).
26.
B. M.
Coffey
,
H. C.
Nallan
, and
J. G.
Ekerdt
,
J. Vac. Sci. Technol. A
39
,
012601
(
2021
).
27.
T.
Faraz
,
Y. G. P.
Verstappen
,
M. A.
Verheijen
,
N. J.
Chittock
,
J. E.
Lopez
,
E.
Heijdra
,
W. J. H.
van Gennip
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
J. Appl. Phys.
128
,
213301
(
2020
).
28.
M.
Bogdanova
,
D.
Lopaev
,
T.
Rakhimova
,
D.
Voloshin
,
A.
Zotovich
, and
S.
Zyryanov
,
Plasma Sources Sci. Technol.
30
,
075020
(
2021
).
29.
M.
Bogdanova
,
D.
Lopaev
,
S.
Zyryanov
,
D.
Voloshin
, and
T.
Rakhimova
,
Plasma Sources Sci. Technol.
28
,
095017
(
2019
).
30.
V.
Kuzmenko
,
A.
Miakonkikh
, and
K.
Rudenko
,
J. Phys.: Conf. Ser.
1870
,
012006
(
2021
).
31.
B. J.
Bachman
and
M. J.
Vasile
,
J. Vac. Sci. Technol. A
7
,
2709
(
1989
).
32.
D. T.
Clark
,
D.
Kilcast
,
D. B.
Adams
, and
W. K. R.
Musgrave
,
J. Electron Spectrosc. Relat. Phenom.
1
,
227
(
1972–1973
).
33.
H. S.
Munro
and
C.
Till
,
J. Polym. Sci.: Part A: Polym. Chem.
25
,
1065
(
1987
).
34.
J. J.
Pireaux
,
J. P.
Delrue
,
A.
Hecq
, and
J. P.
Dauchet
, “
XPS analysis of fluorocarbon films produced by sputtering of a PTFE bulk cathode
,” in
Physico-Chemical Aspects of Polymer Surfaces
, edited by
K. L.
Mittal
(
Plenum
,
New York
,
1983
), Vol. 1.
36.
V.
Matolin
,
M.
Rebholz
, and
N.
Kruse
,
Surf. Sci.
245
,
233
(
1991
).
37.
W.
Wurth
,
C.
Schneider
,
R.
Treichler
,
E.
Umbach
, and
D.
Menzel
,
Phys. Rev. B
35
,
7741
(
1987
).
38.
J. A.
Taylor
,
G. M.
Lancaster
, and
J. W.
Rabalais
,
Appl. Surf. Sci.
1
,
503
(
1978
).
39.
J. P.
Lehan
,
Y.
Mao
,
B. G.
Bovard
, and
H. A.
Macleod
,
Thin Solid Films
203
,
227
(
1991
).
40.
V. O.
Kuzmenko
,
A.
Miakonkikh
, and
K. V.
Rudenko
,
High Energy Chem.
57
,
S100
(
2023
).
41.
K.
Lin
,
C.
Li
,
S.
Engelmann
,
R.
Bruce
,
E.
Joseph
,
D.
Metzler
, and
G.
Oehrlein
,
J. Vac. Sci. Technol. A
38
,
032601
(
2020
).
42.
T.
Standaert
,
C.
Hedlund
,
E.
Joseph
,
G.
Oehrlein
, and
T.
Dalton
,
J. Vac. Sci. Technol. A
22
,
53
(
2004
).
43.
M.
Bogdanova
,
D.
Lopaev
,
S.
Zyryanov
,
D.
Voloshin
, and
T.
Rakhimova
,
Plasma Sources Sci. Technol.
27
,
025003
(
2018
).
44.
M. A.
Bogdanova
,
D. V.
Lopaev
,
S. M.
Zyryanov
, and
A. T.
Rakhimov
,
Phys. Plasmas
23
,
073510
(
2016
).
You do not currently have access to this content.