Photoelectron spectroscopy allows for the investigation of the electronic structure and chemical bonding of actinide elements and their compounds, providing insights into oxidation states, chemical environments, and electronic configurations. This knowledge can aid in comprehending reactivity, stability, and other properties of actinide materials, which is essential for ensuring safe handling, storage, and disposal in nuclear applications. We have reviewed a number of results in actinide core-level photoemission studies, with a particular focus on x-ray photoemission spectroscopy (XPS) techniques. Actinides, due to their inherent radioactivity, have not been as well studied with XPS as have other segments of the periodic table. Given the inherent safety concerns, equipment requirements, and short isotopic lifetimes associated with actinide research, we outline the strategies and precautions necessary for conducting successful and safe XPS experiments on these elements. Core-level photoemission can be a powerful proven tool for investigating the electronic structure, chemical bonding behaviors, and physical properties of actinides, providing valuable insights into an incredibly complex behavior of these systems. We highlight key findings from recent studies that demonstrate the potential of core-level photoemission in uncovering the unique properties of actinides and their compounds. Finally, we identify current knowledge gaps and future research directions that could enhance our understanding of actinide chemistry and physics.

2.
H.
Bonzel
and
C.
Kleint
,
Prog. Surf. Sci.
49
,
107
(
1995
).
3.
C.
Fadley
,
J. Electron Spectrosc. Relat. Phenom.
178-179
,
2
(
2010
).
4.
B. W.
Veal
,
D. J.
Lam
,
H. R.
Hoekstra
,
H.
Diamond
, and
W. T.
Carnall
, “XPS studies of actinide materials. X-ray photoemission spectroscopy, review” Report No. CONF-760956-4, presented at the International Conference on the Electronic Structures on the Actinides, Wroclaw, Poland, 13 Sep. 1976 (1976), see https://www.osti.gov/biblio/7226870.
5.
J. C.
Fuggle
,
M.
Campagna
,
Z.
Zolnierek
,
R.
Lässer
, and
A.
Platau
,
Phys. Rev. Lett.
45
,
1597
(
1980
).
6.
J.
Terry
, in Radioactive Samples in International Tables For Crystallography, Volume I: X-ray Absorption Spectroscopy and Related Techniques, edited by C. T. Chantler, F. Boscherini, and B. Bunker (International Union of Crystallography, Dordrecht, 2022).
7.
D. C.
Hoffman
,
F. O.
Lawrence
,
J. L.
Mewherter
, and
F. M.
Rourke
,
Nature
234
,
132
(
1971
).
8.
P.
Söderlind
,
J. Electron Spectrosc. Relat. Phenom.
194
,
2
(
2014
).
9.
S.
Raaen
and
N. A.
Braaten
,
Phys. Rev. B
42
,
9151
(
1990
).
10.
C.
Bonnelle
and
N.
Spector
, “Actinide spectroscopy,” in Rare-Earths and Actinides in High Energy Spectroscopy (Springer, Netherlands, 2015), pp. 327–373.
11.
A.
Boring
and
J.
Smith
,
Los Alamos Sci.
26
,
90
(
2000
).
12.
V.
Karapetoff
,
J. Franklin Inst.
210
,
609
(
1930
).
13.
F. A.
Cotton
and
G.
Wilkinson
, Advanced Inorganic Chemistry, 5th ed. (Wiley, New York, 1988).
15.
J.
Kolorenč
,
A. B.
Shick
, and
A. I.
Lichtenstein
,
Phys. Rev. B
92
,
085125
(
2015
).
16.
P. S.
Bagus
and
E. S.
Ilton
,
Top. Catal.
56
,
1121
(
2013
).
17.
J. R.
Naegele
,
J.
Ghijsen
, and
L.
Manes
, “Localization and hybridization of 5f states in the metallic and ionic bond as investigated by photoelectron spectroscopy,” in Actinides—Chemistry and Physical Properties (Springer, Berlin, 1985), pp. 197–262.
18.
L. E.
Roy
,
T.
Durakiewicz
,
R. L.
Martin
,
J. E.
Peralta
,
G. E.
Scuseria
,
C. G.
Olson
,
J. J.
Joyce
, and
E.
Guziewicz
,
J. Comput. Chem.
29
,
2288
(
2008
).
19.
P.
Seth
,
P.
Hansmann
,
A.
van Roekeghem
,
L.
Vaugier
, and
S.
Biermann
,
Phys. Rev. Lett.
119
,
056401
(
2017
).
20.
A.
Taylor
,
J. Chem. Technol. Biotechnol.
53
,
215
(
1992
).
21.
G.
Panaccione
et al.,
Nucl. Instrum. Methods Phys. Res., Sect. B
246
,
106
(
2006
).
22.
R.
Caciuffo
,
G. H.
Lander
, and
G.
van der Laan
,
Rev. Mod. Phys.
95
,
015001
(
2023
).
23.
A.
Seibert
,
S.
Stumpf
,
T.
Gouder
,
D.
Schild
, and
M. A.
Denecke
, “Actinide thin films as surface models,” in Actinide Nanoparticle Research, edited by S. N. Kalmykov and M. A. Denecke (Springer, Berlin, 2011), pp. 275–313.
24.
T.
Gouder
and
L.
Havela
,
Microchim. Acta
138
,
207
(
2002
).
26.
J.
Allen
,
Y.-X.
Zhang
,
L.
Tjeng
,
L.
Cox
,
M.
Maple
, and
C.-T.
Chen
,
J. Electron Spectrosc. Relat. Phenom.
78
,
57
(
1996
).
27.
M.
Krause
,
R.
Haire
,
O.
Keski-Rahkonen
, and
J.
Peterson
,
J. Electron Spectrosc. Relat. Phenom.
47
,
215
(
1988
).
28.
A. J.
Arko
,
J. J.
Joyce
,
L. A.
Morales
,
J. H.
Terry
, and
R. K.
Schulze
,
Los Alamos Sci.
26
,
168
(
2000
), see https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-00-4100-18.
29.
J.
Yeh
and
I.
Lindau
,
At. Data Nucl. Data Tables
32
,
1
(
1985
).
30.
B. W.
Veal
,
D. J.
Lam
,
H.
Diamond
, and
H. R.
Hoekstra
,
Phys. Rev. B
15
,
2929
(
1977
).
31.
Y.
Teterin
,
K.
Maslakov
,
M.
Ryzhkov
,
A.
Teterin
,
K.
Ivanov
,
S.
Kalmykov
, and
V.
Petrov
,
Nucl. Technol. Radiat. Prot.
30
,
83
(
2015
).
32.
Y. A.
Teterin
,
K. I.
Maslakov
,
A. Y.
Teterin
,
K. E.
Ivanov
,
M. V.
Ryzhkov
,
V. G.
Petrov
,
D. A.
Enina
, and
S. N.
Kalmykov
,
Phys. Rev. B
87
,
245108
(
2013
).
33.
D. L.
Clark
,
D. A.
Geeson
,
J.
Robert
, and
J.
Hanrahan
, in Plutonium Handbook: A Guide to the Technology, 2nd ed., edited by O. J. Wick and R. D. Baker (American Nuclear Society, LaGrange Park, 2019).
34.
C. E.
Moore
,
Atomic Energy Levels
(
NSRDS-NBS
,
Washington DC
,
1970
).
35.
R. G.
Haire
,
The Chemistry of the Actinide and Transactinide Elements
(
Springer Science & Business Media
,
New York
,
2006
).
36.
G. T.
Seaborg
, “The chemical and radioactive properties of the heavy elements,” in World Scientific Series in 20th Century Chemistry (World Scientific, Singapore, 1994), pp. 20–23.
38.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
(
CRC
,
Boca Raton
,
2004
), Vol. 85.
39.
W. T.
Carnall
,
P. R.
Fields
, and
K.
Rajnak
,
J. Chem. Phys.
49
,
4447
(
1968
).
40.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
41.
P.
Santini
,
S.
Carretta
,
G.
Amoretti
,
R.
Caciuffo
,
N.
Magnani
, and
G. H.
Lander
,
Rev. Mod. Phys.
81
,
807
(
2009
).
42.
J. M.
Fournier
and
L.
Manes
, “Actinide solids 5f dependence of physical properties,” in Actinides—Chemistry and Physical Properties (Springer, Berlin, 1985), pp. 1–56.
43.
P.
Nevitt
,
Photoemission Studies of the Light Actinides
(
Cardiff University
,
Cardiff
,
2005
).
44.
B. L.
Scott
,
J. J.
Joyce
,
T. D.
Durakiewicz
,
R. L.
Martin
,
T. M.
McCleskey
,
E.
Bauer
,
H.
Luo
, and
Q.
Jia
,
Coord. Chem. Rev.
266
,
137
(
2014
).
45.
R.
Baptist
,
D.
Courteix
,
J.
Chayrouse
, and
L.
Heintz
,
J. Phys. F: Met. Phys.
12
,
2103
(
1982
).
46.
T.
Gouder
and
R.
Eloirdi
,
Actinides: Photoelectron Spectroscopy
(
Wiley
,
New York
,
2018
), pp. 1–15.
48.
J. C.
Fuggle
,
A. F.
Burr
,
L. M.
Watson
,
D. J.
Fabian
, and
W.
Lang
,
J. Phys. F: Met. Phys.
4
,
335
(
1974
).
49.
M.
Iwan
,
E. E.
Koch
, and
F.-J.
Himpsel
,
Phys. Rev. B
24
,
613
(
1981
).
50.
A. R. M.
Iasir
and
K. D.
Hammond
,
Comput. Mater. Sci.
171
,
109221
(
2020
).
51.
K. T.
Moore
and
G.
van der Laan
,
Rev. Mod. Phys.
81
,
235
(
2009
).
52.
C. E.
Olsen
,
A. L.
Comstock
, and
T. A.
Sandenaw
,
J. Nucl. Mater.
195
,
312
(
1992
).
53.
T.
Gouder
,
L.
Havela
,
F.
Wastin
, and
J.
Rebizant
,
Europhys. Lett.
55
,
705
(
2001
).
54.
J. G.
Tobin
et al.,
Phys. Rev. B
68
,
155109
(
2003
).
55.
T.
Gouder
,
P.
Oppeneer
,
F.
Huber
,
F.
Wastin
, and
J.
Rebizant
,
Phys. Rev. B
72
,
115122
(
2005
).
56.
T.
Gouder
,
G.
van der Laan
,
A. B.
Shick
,
R. G.
Haire
, and
R.
Caciuffo
,
Phys. Rev. B
83
,
125111
(
2011
).
57.
W.-D.
Schneider
and
C.
Laubschat
,
Phys. Rev. B
23
,
997
(
1981
).
58.
J.
Fuggle
and
Z.
Zołnierek
,
Solid State Commun.
38
,
799
(
1981
).
59.
M.
Biton
,
A.
Shamir
,
M.
Shandalov
,
N.
Arad-Vosk
,
A.
Sa’Ar
,
E.
Yahel
, and
Y.
Golan
,
Thin Solid Films
556
,
223
(
2014
).
60.
J.
Naegele
,
L.
Manes
,
J.
Spirlet
, and
J.
Fournier
,
Appl. Surf. Sci.
4
,
510
(
1980
).
61.
F.
Stein
and
A.
Leineweber
,
J. Mater. Sci.
56
,
5321
(
2020
).
62.
S.-I.
Fujimori
,
I.
Kawasaki
,
Y.
Takeda
,
H.
Yamagami
,
A.
Nakamura
,
Y.
Homma
, and
D.
Aoki
,
J. Phys. Soc. Jpn.
90
,
015002
(
2021
).
63.
R.
Eloirdi
,
T.
Gouder
,
F.
Wastin
, and
J.
Rebizant
,
J. Alloys Compd.
372
,
10
(
2004
).
64.
R.
Troć
,
M.
Samsel-Czekała
,
E.
Talik
,
R.
Wawryk
,
Z.
Gajek
, and
M.
Pasturel
,
Phys. Rev. B
92
,
104427
(
2015
).
65.
66.
M.
Samsel-Czekała
,
E.
Talik
,
M.
Winiarski
, and
R.
Troć
,
J. Alloys Compd.
638
,
313
(
2015
).
67.
M.
Samsel-Czekała
,
E.
Talik
,
R.
Troć
, and
N.
Shitsevalova
,
J. Alloys Compd.
615
,
446
(
2014
).
68.
J.
Morkowski
,
G.
Chełkowska
,
M.
Werwiński
,
A.
Szajek
,
R.
Troć
, and
C.
Neise
,
J. Alloys Compd.
509
,
6994
(
2011
).
69.
A.
Szajek
,
J.
Morkowski
,
A.
Bajorek
,
G.
Chełkowska
, and
R.
Troć
,
J. Magn. Magn. Mater.
281
,
281
(
2004
).
70.
A.
Szajek
,
J.
Morkowski
,
A.
Bajorek
,
G.
Chełkowska
, and
R.
Troć
,
J. Alloys Compd.
386
,
75
(
2005
).
71.
H.
Höchst
,
K.
Tan
, and
K.
Buschow
,
J. Magn. Magn. Mater.
54-57
,
545
(
1986
).
72.
D. O.
Charkin
et al.,
J. Alloys Compd.
677
,
271
(
2016
).
73.
L.
Havela
,
A.
Adamska
,
R.
Eloirdi
,
E.
Colineau
,
J.-C.
Griveau
,
T.
Gouder
,
F.
Huber
,
D.
Bouexière
, and
A. B.
Shick
,
J. Nucl. Mater.
414
,
458
(
2011
).
74.
M.
Paukov
,
I.
Tkach
,
F.
Huber
,
T.
Gouder
,
M.
Cieslar
,
D.
Drozdenko
,
P.
Minarik
, and
L.
Havela
,
Appl. Surf. Sci.
441
,
113
(
2018
).
75.
T.
Durakiewicz
et al.,
Phys. Rev. B
70
,
205103
(
2004
).
76.
P.
Roussel
,
S. C.
Hernandez
,
J. J.
Joyce
,
K. S.
Graham
, and
T.
Venhaus
,
J. Vac. Sci. Technol. A
41
,
023204
(
2023
).
77.
T.
Gouder
,
F.
Wastin
,
J.
Rebizant
, and
L.
Havela
,
Phys. Rev. Lett.
84
,
3378
(
2000
).
78.
D.
Coster
and
R. D. L.
Kronig
,
Physica
2
,
13
(
1935
).
79.
80.
A.
Kotani
and
H.
Ogasawara
,
Physica B
186–188
,
16
(
1993
).
81.
P.
Cakir
,
R.
Eloirdi
,
F.
Huber
,
R.
Konings
, and
T.
Gouder
,
Appl. Surf. Sci.
393
,
204
(
2017
).
82.
D.
Courteix
,
J.
Chayrouse
,
L.
Heintz
, and
R.
Baptist
,
Solid State Commun.
39
,
209
(
1981
).
83.
K.-N.
Huang
,
M.
Aoyagi
,
M. H.
Chen
,
B.
Crasemann
, and
H.
Mark
,
At. Data Nucl. Data Tables
18
,
243
(
1976
).
84.
A.
Seibert
,
T.
Gouder
, and
F.
Huber
,
Radiochim. Acta
97
,
247
(
2009
).
85.
M.
O’Keeffe
,
J. Solid State Chem.
85
,
108
(
1990
).
86.
G.
Moretti
,
J. Electron Spectrosc. Relat. Phenom.
95
,
95
(
1998
).
87.
W.
McLean
,
C.
Colmenares
,
R.
Smith
, and
G.
Somorjai
,
Phys. Rev. B
25
,
8
(
1982
).
88.
E. S.
Ilton
and
P. S.
Bagus
,
Surf. Interface Anal.
43
,
1549
(
2011
).
89.
Y.-S.
Youn
,
J.
Lee
,
J.
Kim
, and
J.-Y.
Kim
,
J. Nucl. Mater.
504
,
50
(
2018
).
90.
Y.
Baer
and
J.
Schoenes
,
Solid State Commun.
33
,
885
(
1980
).
91.
M.
Schindler
,
F.
Hawthorne
,
M.
Freund
, and
P.
Burns
,
Geochim. Cosmochim. Acta
73
,
2471
(
2009
).
92.
M. L.
Lau
,
A.
Burleigh
,
J.
Terry
, and
M.
Long
,
J. Vac. Sci. Technol. A
41
,
060801
(
2023
).
93.
J.
Terry
et al.,
Appl. Surf. Sci.
547
,
149059
(
2021
).
94.
S.-I.
Fujimori
,
Y.
Saito
,
K.-I.
Yamaki
,
T.
Okane
,
N.
Sato
,
T.
Komatsubara
,
S.
Suzuki
, and
S.
Sato
,
Surf. Sci.
444
,
180
(
2000
).
95.
C. S.
Fadley
, “Recent developments in photoelectron diffraction,” in Core-Level Spectroscopy in Condensed Systems, edited by J. Kanamori and A. Kotani (Springer, Berlin, 1988), pp. 236–252.
96.
J.
Terry
,
M. R.
Linford
,
C.
Wigren
,
R.
Cao
,
P.
Pianetta
, and
C. E. D.
Chidsey
,
Appl. Phys. Lett.
71
,
1056
(
1997
).
97.
L.
Cox
and
W.
Ellis
,
Solid State Commun.
78
,
1033
(
1991
).
98.
J.
Pireaux
,
J.
Riga
,
E.
Thibaut
,
C.
Tenret-Noël
,
R.
Caudano
, and
J.
Verbist
,
Chem. Phys.
22
,
113
(
1977
).
99.
T.
Gouder
,
R.
Eloirdi
, and
R.
Caciuffo
,
Sci. Rep.
8
,
8306
(
2018
).
100.
A.
Seibert
,
T.
Gouder
, and
F.
Huber
,
J. Nucl. Mater.
389
,
470
(
2009
).
101.
J.
Tobin
et al.,
J. Nucl. Sci. Technol.
39
,
98
(
2002
).
102.
T.
Gouder
,
A.
Seibert
,
L.
Havela
, and
J.
Rebizant
,
Surf. Sci.
601
,
L77
(
2007
).
103.
J.
Farr
,
R. K.
Schulze
, and
M. P.
Neu
,
J. Nucl. Mater.
328
,
124
(
2004
).
104.
A. J.
Nelson
,
W. K.
Grant
,
J. A.
Stanford
,
W. J.
Siekhaus
,
P. G.
Allen
, and
W.
McLean
,
J. Vac. Sci. Technol. A
33
,
031401
(
2015
).
105.
K.
Mayer
,
B.
Kanellakopoulos
,
J.
Naegele
, and
L.
Koch
,
J. Alloys Compd.
213–214
,
456
(
1994
).
106.
J. D.
Denlinger
et al.,
Rev. Sci. Instrum.
66
,
1342
(
1995
).
107.
L.
Havela
,
F.
Wastin
,
J.
Rebizant
, and
T.
Gouder
,
Phys. Rev. B
68
,
085101
(
2003
).
108.
L.
Black
,
F.
Miserque
,
T.
Gouder
,
L.
Havela
,
J.
Rebizant
, and
F.
Wastin
,
J. Alloys Compd.
315
,
36
(
2001
).
109.
T.
Gouder
,
L.
Havela
,
L.
Black
,
F.
Wastin
,
J.
Rebizant
,
P.
Boulet
,
D.
Bouexière
,
S.
Heathman
, and
M.
Idiri
,
J. Alloys Compd.
336
,
73
(
2002
).
110.
J.
Chastain
and
R. C.
King
, Jr.
,
Handbook of X-ray Photoelectron Spectroscopy
(
Perkin-Elmer Corporation
,
Eden Prairie
,
1992
), Vol. 40, p. 221.
111.
A. F.
Carley
,
P.
Nevitt
, and
P.
Roussel
,
J. Alloys Compd.
448
,
355
(
2008
).
112.
L.
Luo
,
Y.
Hu
,
Q.
Pan
,
Z.
Long
,
L.
Lu
,
K.
Liu
, and
X.
Wang
,
J. Nucl. Mater.
501
,
371
(
2018
).
113.
T.
Gouder
,
L.
Havela
,
A. B.
Shick
,
F.
Huber
,
F.
Wastin
, and
J.
Rebizant
,
J. Phys.: Condens. Matter
19
,
476201
(
2007
).
114.
M.
Eckle
,
R.
Eloirdi
,
T.
Gouder
,
M.
Colarieti Tosti
,
F.
Wastin
, and
J.
Rebizant
,
J. Nucl. Mater.
334
,
1
(
2004
).
115.
X.
Feng
,
B.
D’Souza
, and
J.
Zhang
,
Surf. Sci. Spectra
26
,
024008
(
2019
).
116.
X.
Feng
,
B.
Davis
, and
J.
Zhang
,
Surf. Sci. Spectra
27
,
024002
(
2020
).
117.
G.
Bancroft
,
T. K.
Sham
, and
S.
Larsson
,
Chem. Phys. Lett.
46
,
551
(
1977
).
118.
E.
Thibaut
,
J. P.
Boutique
,
J. J.
Verbist
,
J. C.
Levet
, and
H.
Noel
,
J. Am. Chem. Soc.
104
,
5266
(
1982
).
119.
J.
Farr
and
L.
Cox
, “Core-level binding energy shifts of the light actinide tetrafluorides and dioxides,” LA-11677-MS, 1989.
120.
J. W.
Pinder
et al.,
Appl. Surf. Sci. Adv.
19
,
100534
(
2024
).
121.
L.
Havela
,
D.
Legut
, and
J.
Kolorenč
,
Rep. Prog. Phys.
86
,
056501
(
2023
).
122.
I. R.
Shein
and
A. L.
Ivanovskii
,
J. Struct. Chem.
49
,
348
(
2008
).
123.
L.
Havela
et al.,
J. Electron Spectrosc. Relat. Phenom.
239
,
146904
(
2020
).
124.
T.
Gouder
,
A.
Seibert
,
J.
Rebizant
,
F.
Huber
, and
L.
Havela
,
MRS Online Proc. Lib.
986
,
9860102
(
2007
).
125.
D.
Larson
and
K.
Motyl
,
J. Electron Spectrosc. Relat. Phenom.
50
,
67
(
1990
).
127.
L. E.
Cox
,
J. W.
Ward
, and
R. G.
Haire
,
Phys. Rev. B
45
,
13239
(
1992
).
128.
129.
K. I.
Maslakov
,
Y. A.
Teterin
,
S. V.
Stefanovsky
,
S. N.
Kalmykov
,
A. Y.
Teterin
, and
K. E.
Ivanov
,
J. Alloys Compd.
712
,
36
(
2017
).
130.
K.
Maslakov
,
Y.
Teterin
,
S.
Stefanovsky
,
S.
Kalmykov
,
A.
Teterin
,
K.
Ivanov
, and
S.
Danilov
,
J. Non-Cryst. Solids
482
,
23
(
2018
).
131.
S. V.
Stefanovsky
,
K. I.
Maslakov
,
Y. A.
Teterin
,
S. N.
Kalmykov
,
S. S.
Danilov
,
A. Y.
Teterin
, and
K. E.
Ivanov
,
Dokl. Phys. Chem.
478
,
6
(
2018
).
132.
M.
Said
and
A. E.
Hixon
,
J. Alloys Compd.
854
,
156277
(
2021
).
133.
T.
Rollow
, “Type a accident investigation of the March 15, 2000 plutonium-238 multiple intake event at the plutonium facility Los Alamos National Laboratory” (2000), see https://www.energy.gov/ehss/articles/type-accident-investigation-march-16-2000-plutonium-238-multiple-intake-event.
134.
D.
Shao
,
X.
Ren
,
J.
Wen
,
S.
Hu
,
J.
Xiong
,
T.
Jiang
,
X.
Wang
, and
X.
Wang
,
J. Hazard. Mater.
302
,
1
(
2016
).
135.
T.
Trelenberg
,
S.
Glade
,
J.
Tobin
, and
A.
Hamza
,
Surf. Sci.
600
,
2338
(
2006
).
136.
J.
Cobos
,
L.
Havela
,
V.
Rondinella
,
J.
de Pablo
,
T.
Gouder
,
J.-P.
Glatz
,
P.
Carbol
, and
H.
Matzke
,
Radiochim. Acta
90
,
597
(
2002
).
137.
G. H.
Major
,
N.
Fairley
,
P. M. A.
Sherwood
,
M. R.
Linford
,
J.
Terry
,
V.
Fernandez
, and
K.
Artyushkova
,
J. Vac. Sci. Technol. A
38
,
061203
(
2020
).
138.
L.
Harding
,
E.
Lawrence Bright
,
J.
Laverock
,
D.
Goddard
, and
R.
Springell
,
Thin Solid Films
768
,
139690
(
2023
).
140.
T.
Das
,
J.-X.
Zhu
, and
M. J.
Graf
,
Phys. Rev. Lett.
108
,
017001
(
2012
).
141.
M. C.
Heaven
,
B. J.
Barker
, and
I. O.
Antonov
,
J. Phys. Chem. A
118
,
10867
(
2014
).
142.
R.
Eloirdi
,
L.
Havela
,
T.
Gouder
,
A.
Shick
,
J.
Rebizant
,
F.
Huber
, and
R.
Caciuffo
,
J. Nucl. Mater.
385
,
8
(
2009
).
143.
P.
Roussel
,
A. J.
Bishop
, and
A. F.
Carley
,
Surf. Sci.
714
,
121914
(
2021
).
144.
D. R.
Baer
,
G. E.
McGuire
,
K.
Artyushkova
,
C. D.
Easton
,
M. H.
Engelhard
, and
A. G.
Shard
,
J. Vac. Sci. Technol. A
39
,
021601
(
2021
).
145.
G. H.
Major
,
B. M.
Clark
,
K.
Cayabyab
,
N.
Engel
,
C. D.
Easton
,
J.
Čechal
,
D. R.
Baer
,
J.
Terry
, and
M. R.
Linford
,
J. Vac. Sci. Technol. A
41
,
043201
(
2023
).
146.
J.-F.
Boily
and
E. S.
Ilton
, “An independent confirmation of the correlation of Uf4 primary peaks and satellite structures of UVI, UV and UIV in mixed valence uranium oxides by two-dimensional correlation spectroscopy,”
Sur. Sci.
602
(24),
3637
–3646 (
2008
).
You do not currently have access to this content.