Diamondlike carbon (DLC) thin films have attracted growing interest due to their extraordinary properties, which occur if the fraction of sp3 C-bonds in the amorphous carbon films is high. This high fraction of sp3 C-bonds requires a high ionization rate of the sputtered carbon and a high kinetic energy of the carbon species. The first part of this article provides a detailed overview of the possibilities to increase the ionized fraction of the sputtered carbon and a brief description of the DLC growth models. The overview will include previously unpublished calculations by our group that include the ionization rate of carbon compared to some metals, the mean ionization path length of carbon, and the carbon ion flux at the substrate. In addition, the problem of simultaneous deposition of sp2- and sp3-bonded carbon during a HiPIMS pulse is explained for the first time. In the second part, we will present the influence of different carbon-based target materials on ionization, arcing, and deposition rates. Therefore, three different carbon-based target materials were investigated for high-power impulse magnetron sputtering (HiPIMS) depositions of a-C films: (a) graphite target, (b) fine-grained graphite target, and (c) glassy carbon target. The acquired data were compared to dc magnetron sputtering (dcMS). For HiPIMS, the pulse parameters and the total argon gas pressure were varied. The deposition process was characterized by the acquisition of the target currents and voltages, the arcing rate, optical emission spectroscopy (OES), and monitoring the deposition rate using a quartz crystal microbalance. The studies revealed that with HiPIMS, arcing was increased strongly with the peak current density for the graphite target. With the glassy carbon target, arcing was low at the beginning but increased with the duration of the tests. This target had a polished surface in the as-delivered state, which became rougher during sputtering. Similar deposition rates have been measured for dcMS and HiPIMS. With OES, only a low ionization of carbon was identified. The deposition of a-C coatings produced films with a low hardness of about 1200 HV (about 12 GPa) for both sputtering methods (dcMS and HiPIMS), as no substrate bias was applied. It can be concluded that arcing was lowest with the glassy carbon target and that the ionization rate was not significantly influenced by the change in the target material.

1.
J.
Robertson
,
Mater. Sci. Eng.: R Rep.
37
,
129
(
2002
).
2.
VDI 2840
, “Kohlenstoffschichten Grundlagen, Schichttypen und Eigenschaften,”
Beuth Verlag GmbH
(2012).
3.
S.
Falabella
,
D. B.
Boercker
, and
D. M.
Sanders
,
Thin Solid Films
236
,
82
(
1993
).
4.
D. L.
Pappas
,
K. L.
Saenger
,
J.
Bruley
,
W.
Krakow
,
J. J.
Cuomo
,
T.
Gu
, and
R. W.
Collins
,
J. Appl. Phys.
71
,
5675
(
1992
).
5.
F. M.
Kimock
and
B. J.
Knapp
,
Surf. Coat. Technol.
56
,
273
(
1993
).
6.
M.
Zarrabian
,
N.
Fourches-Coulon
,
G.
Turban
,
M.
Lancin
, and
C.
Marhic
,
Diam. Relat. Mater.
6
,
542
(
1997
).
7.
N. A.
Sánchez
,
C.
Rincón
,
G.
Zambrano
,
H.
Galindo
, and
P.
Prieto
,
Thin Solid Films
373
,
247
(
2000
).
8.
E.
Broitman
,
N.
Hellgren
,
Zs.
Czigány
,
R. D.
Twesten
,
J.
Luning
,
I.
Petrov
,
L.
Hultman
, and
B. C.
Holloway
,
J. Vac. Sci. Technol. A
21
,
851
(
2003
).
9.
J. T.
Gudmundsson
,
N.
Brenning
,
D.
Lundin
, and
U.
Helmersson
,
J. Vac. Sci. Technol. A
30
,
030801
(
2012
).
10.
V.
Kouznetsov
,
K.
Macák
,
J. M.
Schneider
,
U.
Helmersson
, and
I.
Petrov
,
Surf. Coat. Technol.
122
,
290
(
1999
).
11.
A.
Aijaz
,
K.
Sarakinos
,
D.
Lundin
,
N.
Brenning
, and
U.
Helmersson
,
Diam. Relat. Mater.
23
,
1
(
2012
).
12.
A.
Aijaz
, “
Synthesis of carbon-based and metal-oxide thin films using high power impulse magnetron sputtering
,”
Ph.D. thesis
(
Linköping University
,
2014
).
13.
A.
Aijaz
,
K.
Sarakinos
,
M.
Raza
,
J.
Jensen
, and
U.
Helmersson
,
Diam. Relat. Mater.
44
,
117
(
2014
).
14.
A.
Anders
,
J.
Andersson
, and
A.
Ehiasarian
,
J. Appl. Phys.
102
,
113303
(
2007
).
15.
A.
Anders
,
J.
Čapek
,
M.
Hála
, and
L.
Martinu
,
J. Phys. D: Appl. Phys.
45
,
012003
(
2012
).
16.
S. P.
Bugaev
,
V. G.
Podkovyrov
,
K. V.
Oskomov
,
S. V.
Smaykina
, and
N. S.
Sochugov
,
Thin Solid Films
389
,
16
(
2001
).
17.
J.
Čapek
,
M.
Hála
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Appl. Phys.
111
,
023301
(
2012
).
18.
B. M.
DeKoven
,
P. R.
Ward
,
R. E.
Weiss
,
R. A.
Christie
,
W.
Scholl
,
D.
Sproul
,
F.
Tomasel
, and
A.
Anders
,
Carbon Thin Film Deposition Using High Power Pulsed Magnetron Sputtering
(
Society of Vacuum Coaters
,
Albuquerque
,
NM
,
2003
).
19.
R.
Ganesan
,
D. G.
McCulloch
,
N. A.
Marks
,
M. D.
Tucker
,
J. G.
Partridge
,
M. M. M.
Bilek
, and
D. R.
McKenzie
,
J. Phys. D: Appl. Phys.
48
,
442001
(
2015
).
20.
A.
Hecimovic
,
K.
Burcalova
, and
A. P.
Ehiasarian
,
J. Phys. D: Appl. Phys.
41
,
095203
(
2008
).
21.
A.
Hecimovic
and
A. P.
Ehiasarian
,
IEEE Trans. Plasma Sci.
39
,
1154
(
2011
).
22.
M.
Hiratsuka
,
A.
Azuma
,
H.
Nakamori
,
Y.
Kogo
, and
K.
Yukimura
,
Surf. Coat. Technol.
229
,
46
(
2013
).
23.
M.
Huang
,
X.
Zhang
,
P.
Ke
, and
A.
Wang
,
Appl. Surf. Sci.
283
,
321
(
2013
).
24.
T.
Konishi
,
K.
Yukimura
, and
K.
Takaki
,
Surf. Coat. Technol.
286
,
239
(
2016
).
25.
M.
Lattemann
,
B.
Abendroth
,
A.
Moafi
,
D. G.
McCulloch
, and
D. R.
McKenzie
,
Diam. Relat. Mater.
20
,
68
(
2011
).
26.
J.
Lin
,
W. D.
Sproul
,
R.
Wei
, and
R.
Chistyakov
,
Surf. Coat. Technol.
258
,
1212
(
2014
).
27.
D.
Lundin
,
M.
Čada
, and
Z.
Hubička
,
Plasma Sources Sci. Technol.
24
,
035018
(
2015
).
28.
S.
Nakao
,
K.
Yukimura
,
H.
Ogiso
,
S.
Nakano
, and
T.
Sonoda
,
Vacuum
89
,
261
(
2013
).
29.
P.
Poolcharuansin
and
J. W.
Bradley
,
Surf. Coat. Technol.
205
,
S307
(
2011
).
30.
P.
Poolcharuansin
and
J. W.
Bradley
,
53rd Annual Technical Conference Proceedings, Orlando, FL, 17–22 April 2010
(Society of Vacuum Coaters, Albuquerque, NM, 2010), pp. 218–223.
31.
P.
Poolcharuansin
and
J. W.
Bradley
,
54th Annual Technical Conference Proceedings, Chicago, IL, 16–21 April 2011
(Society of Vacuum Coaters, Albuquerque, NM, 2011), pp. 166–171.
32.
K.
Sarakinos
,
A.
Braun
,
C.
Zilkens
,
S.
Mráz
,
J. M.
Schneider
,
H.
Zoubos
, and
P.
Patsalas
,
Surf. Coat. Technol.
206
,
2706
(
2012
).
33.
S.
Schmidt
,
Z.
Czigány
,
G.
Greczynski
,
J.
Jensen
, and
L.
Hultman
,
J. Vac. Sci. Technol. A
31
,
011503
(
2013
).
34.
B.
Akhavan
,
R.
Ganesan
,
M.
Stueber
,
S.
Ulrich
,
D. R.
McKenzie
, and
M. M. M.
Bilek
,
Thin Solid Films
688
,
137353
(
2019
).
35.
R.
Ganesan
,
I.
Fernandez-Martinez
,
B.
Akhavan
,
D. T. A.
Matthews
,
D.
Sergachev
,
M.
Stueber
,
D. R.
McKenzie
, and
M. M. M.
Bilek
,
Surf. Coat. Technol.
454
,
129199
(
2023
).
36.
A. C.
Ferrari
,
A.
Libassi
,
B. K.
Tanner
,
V.
Stolojan
,
J.
Yuan
,
L. M.
Brown
,
S. E.
Rodil
,
B.
Kleinsorge
, and
J.
Robertson
,
Phys. Rev. B
62
,
11089
(
2000
).
37.
P.
Patsalas
,
N.
Kalfagiannis
,
S.
Kassavetis
,
G.
Abadias
,
D. V.
Bellas
,
Ch.
Lekka
, and
E.
Lidorikis
,
Mater. Sci. Eng.: R: Rep.
123
,
1
(
2018
).
38.
A. A.
Voevodin
,
M. S.
Donley
, and
J. S.
Zabinski
,
Surf. Coat. Technol.
92
,
42
(
1997
).
39.
J. A.
Hopwood
,
Ionized Physical Vapor Deposition
(
Academic
,
San Diego
,
CA
,
2000
).
40.
M.
Panjan
,
S.
Loquai
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
Plasma Sources Sci. Technol.
24
,
065010
(
2015
).
41.
U.
Helmersson
,
M.
Lattemann
,
J.
Bohlmark
,
A. P.
Ehiasarian
, and
J. T.
Gudmundsson
,
Thin Solid Films
513
,
1
(
2006
).
42.
M.-H.
Lee
and
C.-W.
Chung
,
Phys. Plasmas
12
,
073501
(
2005
).
43.
R. S.
Freund
,
R. C.
Wetzel
,
R. J.
Shul
, and
T. R.
Hayes
,
Phys. Rev. A
41
,
3575
(
1990
).
44.
H.
Eliasson
et al,
Plasma Sources Sci. Technol.
30
,
115017
(
2021
).
45.
K. V.
Oskomov
and
A. V.
Vizir
,
J. Phys.: Conf. Ser.
1393
,
012018
(
2019
).
46.
C.
Maszl
,
W.
Breilmann
,
J.
Benedikt
, and
A.
Von Keudell
,
J. Phys. D: Appl. Phys.
47
,
224002
(
2014
).
47.
D.
Lundin
,
P.
Larsson
,
E.
Wallin
,
M.
Lattemann
,
N.
Brenning
, and
U.
Helmersson
,
Plasma Sources Sci. Technol.
17
,
035021
(
2008
).
48.
A.
Anders
,
M.
Panjan
,
R.
Franz
,
J.
Andersson
, and
P.
Ni
,
Appl. Phys. Lett.
103
,
144103
(
2013
).
49.
A.
Anders
,
P.
Ni
, and
A.
Rauch
,
J. Appl. Phys.
111
,
053304
(
2012
).
50.
A.
Hecimovic
,
V.
Schulz-von Der Gathen
,
M.
Böke
,
A.
Von Keudell
, and
J.
Winter
,
Plasma Sources Sci. Technol.
24
,
045005
(
2015
).
51.
H.
Yu
,
L.
Meng
,
M. M.
Szott
,
J. T.
McLain
,
T. S.
Cho
, and
D. N.
Ruzic
,
Plasma Sources Sci. Technol.
22
,
045012
(
2013
).
52.
F.
Papa
,
H.
Gerdes
,
R.
Bandorf
,
A. P.
Ehiasarian
,
I.
Kolev
,
G.
Braeuer
,
R.
Tietema
, and
T.
Krug
,
Thin Solid Films
520
,
1559
(
2011
).
53.
J.
Bohlmark
,
M.
Östbye
,
M.
Lattemann
,
H.
Ljungcrantz
,
T.
Rosell
, and
U.
Helmersson
,
Thin Solid Films
515
,
1928
(
2006
).
54.
P.
Vašina
,
M.
Meško
,
J. C.
Imbert
,
M.
Ganciu
,
C.
Boisse-Laporte
,
L. D.
Poucques
,
M.
Touzeau
,
D.
Pagnon
, and
J.
Bretagne
,
Plasma Sources Sci. Technol.
16
,
501
(
2007
).
55.
T.
Nakano
,
C.
Murata
, and
S.
Baba
,
Vacuum
84
,
1368
(
2010
).
56.
T. M.
Minea
,
C.
Costin
,
A.
Revel
,
D.
Lundin
, and
L.
Caillault
,
Surf. Coat. Technol.
255
,
52
(
2014
).
57.
T.
Nakano
,
N.
Hirukawa
,
S.
Saeki
, and
S.
Baba
,
Vacuum
87
,
109
(
2013
).
58.
G.
Eichenhofer
,
I.
Fernandez
, and
A.
Wennberg
,
Vakuum in Forschung Und Praxis
29
,
40
(
2017
).
59.
G.
Eichenhofer
,
I.
Fernandez Martinez
, and
A.
Wennberg
, “
Unrevealed film enhancements due to active positive voltage reversal for HiPIMS applications
,”
Presentation, HiPIMS 2017 Conference
,
Braunschweig
, 13–14 June 2017 (AIP Publishing, College Park, MD,
2017
).
60.
H.
Hofsäss
,
H.
Feldermann
,
R.
Merk
,
M.
Sebastian
, and
C.
Ronning
,
Appl. Phys. A: Mater.
66
,
153
(
1998
).
61.
Y.
Lifshitz
,
S. R.
Kasi
,
J. W.
Rabalais
, and
W.
Eckstein
,
Phys. Rev. B
41
,
10468
(
1990
).
63.
I.
Koponen
,
M.
Hakovirta
, and
R.
Lappalainen
,
J. Appl. Phys.
78
,
5837
(
1995
).
64.
F.
Kaulfuss
,
V.
Weihnacht
,
M.
Zawischa
,
L.
Lorenz
,
S.
Makowski
,
F.
Hofmann
, and
A.
Leson
,
Materials
14
,
2176
(
2021
).
65.
C.
Vitelaru
,
A. C.
Parau
,
L. R.
Constantin
,
A. E.
Kiss
,
A.
Vladescu
,
A.
Sobetkii
, and
T.
Kubart
,
Materials
13
,
1038
(
2020
).
66.
M.
Kandah
and
J.-L.
Meunier
,
Plasma Sources Sci. Technol.
5
,
349
(
1996
).
67.
V. O.
Oskirko
,
V. D.
Semenov
,
A. A.
Solovyev
,
S. V.
Rabotkin
,
A. P.
Pavlov
, and
A. N.
Zakharov
,
Vacuum
202
,
111213
(
2022
).
68.
R. C. Weast,
Handbook of Chemistry and Physics
, 67th ed. (CRC Press, 1986).
69.
Sindlhauser Materials GmbH
, “Data sheet of IG-110,” https://www.gtd-graphit.de/werkstoffe (2019).
70.
C3 Prozess- und Analysentechnik GmbH
, “Technical specification,” available at http://www.c3-analysentechnik.de/hersteller/glaskohlenstoff/ (2024).
71.
V.
Tiron
,
I.-L.
Velicu
,
T.
Matei
,
D.
Cristea
,
L.
Cunha
, and
G.
Stoian
,
Coatings
10
,
633
(
2020
).
You do not currently have access to this content.