Ti-Al-N coatings were prepared by cathodic arc deposition on Inconel 718 substrates at different values of constant substrate bias voltage, aiming to produce samples with different self-developed residual stress (RS) depth profiles through the thickness of the coatings. RS profile measurements and structural characterization were performed on a laboratory-scale x-ray diffraction system (x-ray energy of 8 keV) and in a synchrotron x-ray radiation facility (x-ray energy of 15 keV). Mechanical testing to obtain hardness and Young’s modulus values was performed by instrumented nanoindentation. The results indicate higher compressive RS at the film/substrate interface that decays to lower compressive stress or mild tensile stress at the film surface. Surface hardness and the compressive RS value of the coating increase with larger values of the substrate bias voltage. By comparing the stress characterization done on a laboratory scale and at the synchrotron facility, one observes a generally good agreement, indicating that these analyses may be conducted at a smaller scale and with less costly equipment, and still maintain a reliable precision. The work presents and reviews in detail the methodology of the RS depth-profile analysis. The highest hardness of 31.1 GPa and near-substrate compressive RS around −10 GPa were obtained for a bias of −100 V. Transmission electron microscopy results indicate that regions with higher compressive stresses are found to have smaller columns and denser structure, while portions of the same sample with mild compressive or tensile stresses present larger column size and are richer in hexagonal phases. The findings demonstrate the complex interplay between stress, microstructure, and ultimately mechanical properties in industrially produced Ti-Al-N coatings and indicate that any successful strategy to mitigate stress development should consider the inhomogeneous self-developed stress gradients present even in coatings deposited under constant and controlled conditions.

1.
K.-L.
Lin
,
M.-Y.
Hwang
, and
C.-D.
Wu
,
Mater. Chem. Phys.
46
,
77
(
1996
).
2.
M.-R.
Alhafian
,
J.-B.
Chemin
,
Y.
Fleming
,
L.
Bourgeois
,
M.
Penoy
,
R.
Useldinger
,
F.
Soldera
,
F.
Mücklich
, and
P.
Choquet
,
Surf. Coat. Technol.
423
,
127529
(
2021
).
3.
A.
Anders
,
Surf. Coat. Technol.
257
,
308
(
2014
).
4.
J.
Salamania
,
L. J. S.
Johnson
,
I. C.
Schramm
,
K. M.
Calamba
,
R.
Boyd
,
B.
Bakhit
,
L.
Rogström
, and
M.
Odén
,
Surf. Coat. Technol.
419
,
127295
(
2021
).
5.
A. N.
Kale
,
K.
Ravindranath
,
D. C.
Kothari
, and
P. M.
Raole
,
Surf. Coat. Technol.
145
,
60
(
2001
).
6.
B. F.
Coll
,
R.
Fontana
,
A.
Gates
, and
P.
Sathrum
,
Mat. Sci. Eng. A
140
,
816
(
1991
).
7.
E. J.
Herrera-Jimenez
,
E.
Bousser
,
T.
Schmitt
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
Surf. Coat. Technol.
413
,
127058
(
2021
).
8.
G.
Abadias
et al,
J. Vac. Sci. Technol. A
36
,
020801
(
2018
).
9.
R.
Daniel
,
J.
Keckes
,
I.
Matko
,
M.
Burghammer
, and
C.
Mitterer
,
Acta Mater.
61
,
6255
(
2013
).
10.
Z.
Gao
,
X.
Zhang
,
J.
Kulczyk-Malecka
,
Y.
Chen
,
E.
Bousser
,
P.
Kelly
, and
P.
Xiao
,
Scr. Mater.
201
,
113949
(
2021
).
11.
M.
Marciszko
et al,
J. Appl. Crystallogr.
51
,
732
(
2018
).
12.
P. R. T.
Avila
,
O.
Zabeida
,
L. B.
Varela
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
Thin Solid Films
784
,
140069
(
2023
).
13.
L. E.
Koutsokeras
and
G.
Abadias
,
J. Appl. Phys.
111
,
093509
(
2012
).
14.
H.
Ljungcrantz
,
L.
Hultman
,
J. E.
Sundgren
, and
L.
Karlsson
,
J. Appl. Phys.
78
,
832
(
1995
).
15.
K.
Sato
,
N.
Ichimiya
,
A.
Kondo
, and
Y.
Tanaka
,
Surf. Coat. Technol.
163–164
,
135
(
2003
).
16.
M.
Ahlgren
and
H.
Blomqvist
,
Surf. Coat. Technol.
200
,
157
(
2005
).
17.
J. M.
Andersson
,
J.
Vetter
,
J.
Müller
, and
J.
Sjölén
,
Surf. Coat. Technol.
240
,
211
(
2014
).
18.
G.
Greczynski
et al,
Thin Solid Films
556
,
87
(
2014
).
19.
H.
Elmkhah
,
T. F.
Zhang
,
A.
Abdollah-zadeh
,
K. H.
Kim
, and
F.
Mahboubi
,
J. Alloys Compd.
688
,
820
(
2016
).
20.
M.
Stefenelli
,
J.
Todt
,
A.
Riedl
,
W.
Ecker
,
T.
Müller
,
R.
Daniel
,
M.
Burghammer
, and
J.
Keckes
,
J. Appl. Crystallogr.
46
,
1378
(
2013
).
21.
D.
Rafaja
,
V.
Valvoda
,
A. J.
Perry
, and
J. R.
Treglio
,
Surf. Coat. Technol.
92
,
135
(
1997
).
22.
S. J.
Skrzypek
,
A.
Baczmański
,
W.
Ratuszek
, and
E.
Kusior
,
J. Appl. Crystallogr.
34
,
427
(
2001
).
23.
A.
Riedl
et al,
Surf. Coat. Technol.
257
,
108
(
2014
).
25.
M.
Marciszko
et al,
Appl. Surf. Sci.
266
,
256
(
2013
).
26.
D.
Rafaja
,
C.
Wüstefeld
,
M.
Dopita
,
V.
Klemm
,
D.
Heger
,
G.
Schreiber
, and
M.
Šíma
,
Surf. Coat. Technol.
203
,
572
(
2008
).
27.
D.
Rafaja
,
C.
Wüstefeld
,
C.
Baehtz
,
V.
Klemm
,
M.
Dopita
,
M.
Motylenko
,
C.
Michotte
, and
M.
Kathrein
,
Metall. Mater. Trans. A
42
,
559
(
2011
).
28.
D.
Rafaja
,
A.
Poklad
,
V.
Klemm
,
G.
Schreiber
,
D.
Heger
,
M.
Šíma
, and
M.
Dopita
,
Thin Solid Films
514
,
240
(
2006
).
29.
S.
Inamura
,
K.
Nobugai
, and
F.
Kanamaru
,
J. Solid. State Chem.
68
,
124
(
1987
).
30.
R.
Rachbauer
et al,
J. Appl. Phys.
110
,
023515
(
2011
).
31.
C.
Wüstefeld
,
D.
Rafaja
,
V.
Klemm
,
C.
Michotte
, and
M.
Kathrein
,
Surf. Coat. Technol.
205
,
1345
(
2010
).
32.
L.
Rogström
,
J.
Ullbrand
,
J.
Almer
,
L.
Hultman
,
B.
Jansson
, and
M.
Odén
,
Thin Solid Films
520
,
5542
(
2012
).
33.
U.
Ratayski
,
M.
Motylenko
,
A.
Ershova
,
M.
Šíma
,
M.
Jílek
, and
D.
Rafaja
,
Surf. Coat. Technol.
344
,
322
(
2018
).
34.
W. C. C.
Oliver
and
G. M. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
35.
E.
Bousser
,
L.
Martinu
, and
J. E.
Klemberg-Sapieha
,
Surf. Coat. Technol.
235
,
383
(
2013
).
36.
A. F. G.
Leontowich
,
A.
Gomez
,
B. D.
Moreno
,
D.
Muir
,
D.
Spasyuk
,
G.
King
,
J. W.
Reid
,
C. Y.
Kim
, and
S.
Kycia
,
J. Synchrotron Radiat.
28
,
961
(
2021
).
37.
T.
Gnäupel-Herold
,
A. A.
Creuziger
, and
M.
Iadicola
,
J. Appl. Crystallogr.
45
,
197
(
2012
).
38.
T.
Erbacher
,
A.
Wanner
,
T.
Beck
, and
O.
Vöhringer
,
J. Appl. Crystallogr.
41
,
377
(
2008
).
39.
U.
Welzel
,
J.
Ligot
,
P.
Lamparter
,
A. C.
Vermeulen
, and
E. J.
Mittemeijer
,
J. Appl. Crystallogr.
38
,
1
(
2005
).
40.
NIST, see
https://physics.nist.gov/PhysRefData/FFast/html/form.html
for “X-Ray Form Factor, Attenuation
, and Scattering Tables” (accessed January 10, 2024).
41.
G. P.
Zhang
,
G. J.
Gao
,
X. Q.
Wang
,
G. H.
Lv
,
L.
Zhou
,
H.
Chen
,
H.
Pang
, and
S. Z.
Yang
,
Appl. Surf. Sci.
258
,
7274
(
2012
).
42.
P. H.
Mayrhofer
and
C.
Mitterer
,
Recent Research Developments in Vacuum Science & Technology
(
Transworld Research Network
,
Scottsdale
,
2003
), Vol.
4
, pp.
71
97
.
43.
B. D.
Beake
,
Surf. Coat. Technol.
442
,
128272
(
2022
).
44.
Y. T.
Pei
,
D.
Galvan
, and
J. T. M.
De Hosson
,
Acta Mater.
53
,
4505
(
2005
).
45.
J.
Deng
,
F.
Wu
,
Y.
Lian
,
Y.
Xing
, and
S.
Li
,
Int. J. Refract. Met. Hard Mater.
35
,
10
(
2012
).
46.
S.
Hassani
,
M.
Bielawski
,
W.
Beres
,
L.
Martinu
,
M.
Balazinski
, and
J. E.
Klemberg-Sapieha
,
Surf. Coat. Technol.
203
,
204
(
2008
).
47.
D. M.
Devia
,
E.
Restrepo-Parra
,
P. J.
Arango
,
A. P.
Tschiptschin
, and
J. M.
Velez
,
Appl. Surf. Sci.
257
,
6181
(
2011
).
48.
F.
Adibi
,
I.
Petrov
,
L.
Hultman
,
U.
Wahlström
,
T.
Shimizu
,
D.
McIntyre
,
J. E.
Greene
, and
J. E.
Sundgren
,
J. Appl. Phys.
69
,
6437
(
1991
).
49.
M.
to Baben
,
L.
Raumann
,
D.
Music
, and
J. M.
Schneider
,
J. Phys.: Condens. Matter
24
,
155401
(
2012
).
50.
F.
Adibi
,
I.
Petrov
,
J. E.
Greene
,
L.
Hultman
, and
J-E
Sundgren
,
J. Appl. Phys.
73
,
8580
(
1993
).
51.
P. J.
Withers
,
Practical Residual Stress Measurement Methods
(
John Wiley & Sons
,
Hoboken
,
2013
), Vol.
1
, pp.
163
194
.
52.
L. A.
Zepeda-Ruiz
,
E.
Chason
,
G. H.
Gilmer
,
Y.
Wang
,
H.
Xu
,
A.
Nikroo
, and
A. V.
Hamza
,
Appl. Phys. Lett.
95
,
151910
(
2009
).
53.
H. Z.
Yu
and
C. V.
Thompson
,
Acta Mater.
67
,
189
(
2014
).
54.
E.
Chason
and
P. R.
Guduru
,
J. Appl. Phys.
119
,
191101
(
2016
).
55.
E.
Chason
,
M.
Karlson
,
J. J.
Colin
,
D.
Magnfält
,
K.
Sarakinos
, and
G.
Abadias
,
J. Appl. Phys.
119
,
145307
(
2016
).
56.
I.
Petrov
,
P. B.
Barna
,
L.
Hultman
, and
J. E.
Greene
,
J. Vac. Sci. Technol. A
21
,
S117
(
2003
).
57.
S.
Ruan
and
C. A.
Schuh
,
J. Appl. Phys.
107
,
073512
(
2010
).
58.
G.
Abadias
,
Surf. Coat. Technol.
202
,
2223
(
2008
).
59.
P. J.
Kelly
and
R. D.
Arnell
,
Vacuum
56
,
159
(
2000
).
60.
D. A.
Karpov
,
Surf. Coat. Technol.
96
,
22
(
1997
).
61.
U.
Helmersson
,
M.
Lattemann
,
J.
Bohlmark
,
A. P.
Ehiasarian
, and
J. T.
Gudmundsson
,
Thin Solid Films
513
,
1
(
2006
).
62.
See supplementary material online for the Ti 2p, Al 2p, and N 1s core-level spectra signals of the samples at different etching times.

Supplementary Material

You do not currently have access to this content.