Insulating ceramics are widely used in power systems, but their high polarity makes them prone to wet and pollution flashover. In this paper, an Ar/polydimethylsiloxane dielectric barrier discharge excited by a parametric nanosecond-pulse power source is utilized for plasma polymerization to enhance ceramic surface insulating performance. Diagnosis of the discharge characteristics and surface physiochemical properties is conducted at different repetition frequencies to investigate the mechanism associated with the relationship between repetition frequency and the plasma polymerization process. The results indicate that a superhydrophobic surface can be achieved at repetition frequencies above 2 kHz. This transformation brings about multiple effects, including a decrease in surface polarity, an increase in charge dissipation, and an improvement in surface dry and wet flashover voltages. It is discovered that the discharge mode shifts from homogeneous to filamentary due to the memory effect of high repetition frequencies. Additionally, several filaments are generated simultaneously during a single pulse, facilitating the polymerization reactions. For high repetition frequencies, a low-polarity silicon-containing film with micro-nanometer structures is deposited on the ceramic surface, while scattered polymer fragments are generated on the surface without a cross-linked film for repetition frequencies below 2 kHz, despite longer treatment durations.

1.
S.
Stark
,
J. Eur. Ceram. Soc.
42
,
462
(
2022
).
2.
G.
Shanmugam
,
S.
Kalapati
, and
S.
Karakad
,
IET Sci. Meas. Technol.
13
,
656
(
2019
).
3.
A. V.
Kazakov
,
E. M.
Oks
,
N. A.
Panchenko
,
Y. G.
Yushkov
, and
D. B.
Zolotukhin
,
Plasma Sources Sci. Technol.
32
,
075017
(
2023
).
4.
L.
Mochalov
,
A.
Logunov
,
A.
Kitnis
, and
V.
Vorotyntsev
,
Plasma Chem. Plasma Process.
40
,
407
(
2020
).
5.
H.
Ye
et al,
ACS Appl. Mater.
15
,
32610
(
2023
).
6.
M. M.
Quarshie
,
S.
Malykhin
,
A.
Obraztsov
, and
P.
Kuzhir
,
Nanotechnology
35
,
155301
(
2024
).
7.
T.
Nomura
,
H.
Kakiuchi
, and
H.
Ohmi
,
J. Phys. D: Appl. Phys.
57
,
275204
(
2024
).
8.
P.
Raju
and
S.
Babasaheb
,
Mater. Manuf. Process.
36
,
59
(
2021
).
9.
A. S. M.
de Freitas
,
C. C.
Maciel
,
J. S.
Rodrigues
, and
R. P.
Ribeiro
,
Vacuum
194
,
110556
(
2021
).
10.
A.
Zhao
,
X.
Chen
,
S.
Chen
,
C. W.
Yao
,
X. F.
Zhao
,
J. B.
Deng
, and
G. J.
Zhang
,
AIP Adv.
9
,
015102
(
2019
).
11.
R.
Wang
,
H.
Lin
,
Y.
Gao
,
C.
Ren
,
K. K.
Ostrikov
, and
T.
Shao
,
J. Appl. Phys.
122
,
233302
(
2017
).
12.
C.
Ma
,
A.
Nikiforov
,
D.
Hegemann
,
N. D.
De Geyter
,
R.
Morent
, and
K.
Ostrikov
,
Int. Mater. Rev.
68
,
82
(
2023
).
13.
T.
Huiskamp
,
S.
Subramanian
,
V.
Gururajan
,
W. P.
Schroeder
,
C. A.
Schroeder
,
M. A.
Gundersen
, and
S. B.
Cronin
,
IEEE Trans. Plasma Sci.
48
,
245
(
2019
).
14.
M.
Gundersen
,
P. T.
Vernier
,
S. B.
Cronin
, and
S.
Kerketta
,
IEEE Trans. Plasma Sci.
48
,
742
(
2020
).
15.
X.
Cui
,
J.
Shen
,
Y.
Zhou
,
X.
Zhu
,
R.
Zhou
,
R.
Zhou
,
Z.
Fang
, and
P. J.
Cullen
,
Appl. Surf. Sci.
579
,
1536400
(
2022
).
16.
M. A.
Malik
,
K. H.
Schoenbach
,
T. M.
Abdel-Fattah
,
R.
Heller
, and
C.
Jiang
,
Plasma Chem. Plasma Process.
37
,
59
(
2017
).
17.
Z.
Liu
,
J.
Xu
,
X.
Zhu
,
F.
Liu
, and
Z.
Fang
,
High Volt.
7
,
771
(
2022
).
18.
Y.
Mi
,
J.
Wan
,
C.
Bian
,
Y.
Zhang
,
C.
Yao
, and
C.
Li
,
IEEE Trans. Plasma Sci.
46
,
2582
(
2018
).
19.
Z.
Zhao
,
D. D.
Huang
,
Y. N.
Wang
,
J. X.
He
,
C. J.
Li
,
Y. F.
Wang
, and
J. T.
Li
,
Plasma Sources Sci. Technol.
28
,
085015
(
2019
).
20.
M.
Engelhardt
,
F.
Kogelheide
,
K.
Stapelmann
,
N.
Bibinov
, and
P.
Awakowicz
,
Plasma Process. Polym.
14
,
1600095
(
2017
).
21.
O.
Kwon
,
S.
Tang
,
S.
Myung
,
N.
Lu
, and
H. S.
Choi
,
Surf. Coat. Technol.
192
,
1
(
2005
).
22.
Y. C.
Yong
,
D. H.
Dong
,
S. C.
Cho
, and
H. S.
Uhm
,
Chem. Phys. Lett.
427
,
390
(
2006
).
23.
K.
Hong
and
Y.
Kim
,
Mater. Lett.
229
,
213
(
2018
).
24.
C.
Dai
,
G.
Zhu
,
Y.
Tanaka
,
H.
Miyake
,
K.
Sato
,
X.
Chen
, and
A.
Paramane
,
IEEE Trans. Dielectr. Electr. Insul.
29
,
883
(
2022
).
25.
C.
Zhang
,
H.
Lin
,
S.
Zhang
,
C.
Ren
, and
T.
Shao
,
J. Phys. D: Appl. Phys.
50
,
405203
(
2017
).
26.
X.
Cui
,
Z.
Xu
,
Y.
Zhou
,
X.
Zhu
,
S.
Wang
, and
Z.
Fang
,
Surf. Coat. Technol.
451
,
129066
(
2022
).
27.
A.
Tsukanov
,
E.
Shilko
, and
M.
Popov
,
Materials
15
,
3043
(
2022
).
28.
R.
Jiménez-Robles
,
M.
Izquierdo
,
V.
Martínez-Soria
,
L.
Martí
,
A.
Monleón
, and
J. D.
Badia
,
Membranes
13
,
314
(
2023
).
29.
A. A.
Salem
,
K. Y.
Lau
,
W.
Rahiman
, and
Z.
Abdul-Malek
,
IEEE Access
10
,
10416
(
2022
).
30.
S.
Iwata
and
R.
Kitani
,
Electr. Eng.
100
,
1949
(
2018
).
31.
Z.
Li
,
H.
Gao
,
L.
Zhang
,
P.
Wang
,
S.
Wang
,
Y.
Zhu
,
J.
Liu
, and
S.
Li
,
Appl. Surf. Sci.
635
,
157786
(
2023
).
32.
R.
Matin
,
Y.
Totik
,
E. E.
Sukuroglu
,
I.
Efeoglu
, and
T. G.
Santos
,
J. Adhes. Sci. Technol.
34
,
1971
(
2020
).
33.
X.
Zhao
,
D. S.
Park
,
J.
Choi
,
S.
Park
,
S. A.
Soper
, and
M. C.
Murphy
,
J. Colloid Interface Sci.
574
,
347
(
2020
).
34.
S.
Asadollahi
,
J.
Profili
,
M.
Farzaneh
, and
L.
Stafford
,
Materials
12
,
219
(
2019
).
35.
S.
Nijdam
,
E.
Takahashi
,
A.
Markosyan
, and
U.
Ebert
,
Plasma Sources Sci. Technol.
23
,
025008
(
2014
).
36.
L.
Bröcker
,
G. S.
Perlick
, and
C. P.
Klages
,
Plasma Process. Polym.
17
,
2000129
(
2020
).
37.
F.
Tholin
and
A.
Bourdon
,
Plasma Phys. Control. Fusion
57
,
014016
(
2014
).
38.
S. A.
Shcherbanev
,
C.
Ding
,
S. M.
Starikovskaia
, and
N. A.
Popov
,
Plasma Sources Sci. Technol.
28
,
065013
(
2019
).
39.
M. A.
Gilliam
,
S. A.
Farhat
,
G. E.
Garner
,
B. P.
Stubbs
, and
B. B.
Peterson
,
Plasma Process. Polym.
16
,
e1900024
(
2019
).
40.
A.
Wrobel
and
P.
Uznanski
,
Plasma Process. Polym.
18
,
2000241
(
2021
).
41.
D.
Loffhagen
,
M. M.
Becker
,
A. K.
Czerny
,
J.
Philipp
, and
C. P.
Klages
,
Contrib. Plasma Phys.
58
,
337
(
2018
).
42.
F.
Sigeneger
,
M. M.
Becker
,
R.
Foest
, and
D.
Loffhagen
,
J. Phys. D: Appl. Phys.
49
,
345202
(
2016
).
43.
Y. A.
Ussenov
,
L.
Hansen
,
T.
Krüger
,
T. S.
Ramazanov
, and
H.
Kersten
,
Jpn. J. Appl. Phys.
59
,
SHHE06
(
2020
).
44.
L.
Bröcker
,
G.
Perlick
, and
C.
Klages
,
Plasma Process. Polym.
17
,
e2000129
(
2020
).
45.
A. K.
Ferchichi
,
M.
Panabière
,
O.
Desplats
, and
C.
Gourgon
,
Mater. Res. Express.
1
,
025704
(
2014
).
You do not currently have access to this content.