High Aspect Ratio Contact (HARC) hole etch is one of the most challenging processes that require many efforts to optimize etch condition. As the aspect ratio increases, novel issues, such as “distortion” and “twisting,” have been highlighted. Since they cause nonaxisymmetric features along the hole axis, it is difficult to understand the etch mechanism correctly, and therefore, taking a 3D profile image is essential to evaluate the exact etch profile. In this study, we created the models for HARC etch with a cell-based Particle Monte Carlo topography simulator by fitting both vertical and horizontal cross-sectional profiles carefully to the experimental results. Moreover, we attempted to apply a model optimization algorithm. By collaboration of human and the algorithm, modeling engineers can minimize a try-and-error approach, and a precise 3D simulation model can be created much faster than before. As a result, the distortion and twisting profiles were reproduced very well on the simulator, and thus, it is expected that the simulator can be utilized as a practical tool for an assistance of process optimization.

1.
A. H.
Khan
,
S.
Srinivasan
,
J.
Choi
,
A.
Athayde
, and
R.
Achutharaman
,
Meet. Abstr.
MA2014-02
,
1676
(
2014
).
2.
M.
Omura
et al,
Jpn. J. Appl. Phys.
58
,
SEEB02
(
2019
).
3.
M.
Izawa
,
N.
Negishi
,
K.
Yokogawa
, and
Y.
Momonoi
,
Jpn. J. Appl. Phys.
46
,
7870
(
2007
).
4.
J. K.
Lee
,
I. Y.
Jang
,
S. H.
Lee
,
C. K.
Kim
, and
S. H.
Moon
,
J. Electrochem. Soc.
157
,
D142
(
2010
).
5.
J. K.
Kim
,
S. I.
Cho
,
N. G.
Kim
,
M. S.
Jhon
,
K. S.
Min
,
C. K.
Kim
, and
G. Y.
Yeom
,
J. Vac. Sci. Technol. A
31
,
021301
(
2013
).
6.
H.
Kwon
et al,
Phys. Plasmas
29
,
093510
(
2022
).
7.
M.
Miyake
,
N.
Negishi
,
M.
Izawa
,
K.
Yokogawa
,
M.
Oyama
, and
T.
Kanekiyo
,
Jpn. J. Appl. Phys.
48
,
08HE01
(
2009
).
8.
M.
Wang
and
M. J.
Kushner
,
J. Appl. Phys.
107
,
023309
(
2010
).
9.
R.
Igosawa
et al,
Proceedings of International Symposium on Dry Process
, Osaka, Japan, Nov. 24, 2022 (Japan Society of Applied Physics, Tokyo,
2022
), p.
8
.
10.
M.
Shen
et al,
Jpn. J. Appl. Phys.
62
,
SI0801
(
2023
).
11.
J. K.
Kim
,
S. H.
Lee
,
S. I.
Cho
, and
G. Y.
Yeom
,
J. Vac. Sci. Technol. A
33
,
021303
(
2015
).
12.
Y.
Ye
,
Z. L.
Xia
,
L. P.
Liu
and
Z. L.
Huo
,
2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT)
, Qingdao, China, Oct. 31, 2018 (
IEEE
,
New York
, 2018).
13.
D.
Zhang
et al,
Proceedings of SPIE 12499, Advanced Etch Technology and Process Integration for Nanopatterning XII
, San Jose, CA, 1 May 2023 (
SPIE
, Bellingham, WA,
2023
), p.
1249906
.
14.
S.
Koike
et al, 41st International Symposium on Dry Process, Hiroshima, Japan, Nov. 21, 2019 (IOPScience, Bristol, UK,
2019
), p.
55
.
15.
T.
Dobashi
,
H.
Kobayashi
,
Y.
Okuyama
, and
T.
Ohmori
,
Jpn. J. Appl. Phys.
62
,
SI1016
(
2023
).
16.
S.
Huang
,
P.
Panneerchelvam
,
C. M.
Huard
,
S.
Sridhar
,
P.
Ventzek
, and
M. D.
Smith
,
J. Vac. Sci. Technol. A
41
,
053004
(
2023
).
17.
J.
Bergstra
et al,
Proceedings of the Twenty-Fifth Annual Conference on Neural Information Processing Systems
, Granada, Spain, Dec. 12, 2011 (Neural Information Processing Systems Foundation, Granada, Spain,
2011
).
18.
J.
Bergstra
et al,
Proceedings of the 30th International Conference on Machine Learning
, Atlanta, Georgia, June 16, 2013 (International Machine Learning Society, Stuttgart,
2013
).
19.
S.
Watanabe
, e-print arXiv:2304.11127, 26 May 2023.
20.
T.
Ohmine
,
V.
Deshpande
,
H.
Takada
,
T.
Ikeda
,
H.
Saito
,
F.
Kawai
, and
K.
Hamada
,
Jpn. J. Appl. Phys.
50
,
08KB03
(
2011
).
21.
T. K.
Chini
,
S. R.
Bhattacharyya
,
D.
Ghose
, and
D.
Basu
,
Nucl. Instrum. Methods Phys. Res. B
72
,
355
(
1992
).
22.
Q.
Wei
,
K. D.
Li
,
J.
Lian
, and
L.
Wang
,
J. Phys. D: Appl. Phys.
41
,
172002
(
2008
).
23.
R.
Behrisch
and
W.
Eckstein
,
Sputtering by Particle Bombardment
(
Springer-Verlag
,
Berlin
,
2007
).
24.
W.
Eckstein
, IPP-Report, August 13, 2009.
25.
M. A.
Vyvoda
,
M.
Li
,
D. B.
Graves
,
H.
Lee
,
M. V.
Malyshev
,
F. P.
Klemens
,
J. T. C.
Lee
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. B
18
,
820
(
2000
).
26.
R. J.
Hoekstra
and
M. J.
Kushner
,
J. Appl. Phys.
79
,
2275
(
1996
).
27.
N.
Mizutani
and
T.
Hayashi
,
Jpn. J. Appl. Phys.
36
,
L1470
(
1997
).
28.
D.
Fuard
,
O.
Joubert
,
L.
Vallier
,
M.
Assous
,
P.
Berruyer
, and
R.
Blanc
,
J. Vac. Sci. Technol. B
19
,
2223
(
2001
).
29.
S.
Huang
,
S.
Shim
,
S. K.
Nam
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
38
,
023001
(
2020
).
30.
C.
Han
,
Z.
Wu
,
C.
Yang
,
L.
Xie
,
B.
Xu
,
L.
Liu
,
Z.
Yin
,
L.
Jin
, and
Z.
Huo
,
Semicond. Sci. Technol.
35
,
045003
(
2020
).
You do not currently have access to this content.