This study aimed to investigate the influence of reactive oxygen species (i.e., neutral O atom and O 2 + ion) on deposition rates and film thickness uniformity in tetraethoxysilane (TEOS) plasma, utilizing a combination of plasma-fluid dynamic and quantum chemical (QC) simulations. The plasma simulations employed an improved model based on a previous study [H. Li et al., Jpn. J. Appl. Phys. 58, SEED06 (2019)], specifically tailored for a TEOS/O2/Ar/He gas mixture. In the QC simulations, both flat and step silicon oxide (SiO2) surfaces were employed to investigate the adsorption behavior of SiO molecules, the predominant silicon-containing species in TEOS plasma. These simulations also enabled the examination of the rates of SiO molecule adsorption on SiO2 surfaces, facilitating a direct comparison with the sticking coefficients utilized in the plasma simulation. The results of QC simulations revealed that SiO molecules exhibited a higher energetic preference for adsorption on step surfaces than on flat surfaces, resulting in the formation of new SiOH surface sites. Meanwhile, the plasma simulations demonstrated a strong correlation between the deposition rate and film thickness uniformity and the generation of oxygen species, specifically O atoms and O 2 + ions, as well as their respective fluxes. This relationship takes precedence over the influence of TEOS or its fragments colliding with the surface. Notably, higher plasma source frequencies were found to enhance the production of atomic O, which contributed significantly to achieving higher deposition rates.

1.
S. R.
Kalidindi
and
S. B.
Desu
,
J. Electrochem. Soc.
137
,
624
(
1990
).
2.
G. B.
Raupp
and
T. S.
Cale
,
Chem. Mater.
1
,
207
(
1989
).
3.
G. B.
Raupp
,
T. S.
Cale
, and
H. P. W.
Hey
,
J. Vac. Sci. Technol. B
10
,
37
(
1992
).
4.
P. J.
Stout
and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
11
,
2562
(
1993
).
5.
M.
Virmani
,
D. A.
Levedakis
,
G. B.
Raupp
, and
T. S.
Cale
,
J. Vac. Sci. Technol. A
14
,
977
(
1996
).
6.
A.
Granier
,
C.
Vallée
,
A.
Goullet
,
K.
Aumaille
, and
G.
Turban
,
J. Vac. Sci. Technol. A
17
,
2470
(
1999
).
7.
J.
Holtgrave
,
K.
Riehl
,
D.
Abner
, and
P. D.
Haaland
,
Chem. Phys. Lett.
215
,
548
(
1993
).
8.
R.
Basner
,
R.
Foest
,
M.
Schmidt
,
F.
Sigeneger
,
P.
Kurunczi
,
K.
Becker
, and
H.
Deutsch
,
Int. J. Mass Spectrom. Ion Processes
153
,
65
(
1996
).
9.
T.
Ohchi
,
S.
Kobayashi
,
M.
Fukasawa
,
K.
Kugimiya
,
T.
Kinoshita
,
T.
Takizawa
,
S.
Hamaguchi
,
Y.
Kamide
, and
T.
Tatsumi
,
Jpn. J. Appl. Phys.
47
,
5324
(
2008
).
10.
T.
Ito
,
K.
Karahashi
,
M.
Fukasawa
,
T.
Tatsumi
, and
S.
Hamaguchi
,
Jpn. J. Appl. Phys.
50
,
08KD02
(
2011
).
11.
H.
Li
et al,
J. Vac. Sci. Technol. A
35
,
05C303
(
2017
).
12.
H.
Li
et al,
Jpn. J. Appl. Phys.
57
,
06JC05
(
2018
).
13.
K.
Denpoh
,
P.
Moroz
,
T.
Kato
, and
M.
Matsukuma
,
Jpn. J. Appl. Phys.
59
,
SHHB02
(
2020
).
14.
G. S.
Oehrlein
,
R. M.
Tromp
,
Y. H.
Lee
, and
E. J.
Petrillo
,
Appl. Phys. Lett.
45
,
420
(
1984
).
15.
N. H.
Nickel
,
J. Vac. Sci. Technol. B
18
,
1770
(
2000
).
16.
S. A.
Vitale
and
B. A.
Smith
,
J. Vac. Sci. Technol. B
21
,
2205
(
2003
).
17.
S.
Veprek
,
C.
Wang
, and
M. G. J.
Veprek-Heijman
,
J. Vac. Sci. Technol. A
26
,
313
(
2008
).
18.
Y.
Nakakubo
,
A.
Matsuda
,
M.
Fukasawa
,
Y.
Takao
,
T.
Tatsumi
,
K.
Eriguchi
, and
K.
Ono
,
Jpn. J. Appl. Phys.
49
,
08JD02
(
2010
).
19.
A.
Matsuda
,
Y.
Nakakubo
,
Y.
Takao
,
K.
Eriguchi
, and
K.
Ono
,
Jpn. J. Appl. Phys.
50
,
08KD03
(
2011
).
20.
H.
Li
,
H.
Higuchi
,
S.
Kawaguchi
,
K.
Satoh
, and
K.
Denpoh
,
Jpn. J. Appl. Phys.
58
,
SEED06
(
2019
).
21.
S.
Kawaguchi
,
H.
Higuchi
,
H.
Li
,
K.
Denpoh
,
K.
Takahashi
, and
K.
Satoh
,
Jpn. J. Appl. Phys.
58
,
066003
(
2019
).
22.
H.
Li
,
K.
Ishii
,
S.
Sasaki
,
M.
Kamiyama
,
A.
Oda
, and
K.
Denpoh
,
J. Vac. Sci. Technol. B
41
,
022208
(
2023
).
23.
K.
Denpoh
and
K.
Nanbu
,
J. Vac. Sci. Technol. A
16
,
1201
(
1998
).
24.
J. I.
Steinfeld
,
J. S.
Francisco
, and
W. L.
Hase
,
Chemical Kinetics and Dynamics
, 2nd edition (
Prentice Hall
,
New Jersey
,
1998
).
25.
Matlantis, see https://matlantis.com/ for software as a service style material discovery tool.
26.
27.
CFD RC
,
CFD-ACE Module Manual
(
ESI US R&D Inc.
,
Huntsville, AL
,
2003
).
29.
See http://dpc.nifs.ac.jp/DB/IEEJ for recommended data for election collision cross section of atoms and molecules (2008).
30.
M.
Hayashi
,
NIFS-DATA-72
(National Institute for Fusion Science,
Toki
,
2003
).
31.
M. Hayashi, in Handbook of Plasma Materials Science, edited by Plasma Science for Materials, JSPS 153 Committee (Ohmsha, Tokyo, 1992), p. 748.
32.
C. G.
Broyden
,
J. Inst. Math. Appl.
6
,
76
(
1970
).
36.
K.
Okimura
and
N.
Maeda
,
J. Vac. Sci. Technol. A
16
,
3157
(
1998
).
37.
G.
Mills
,
H.
Jónsson
, and
G. K.
Schenter
,
Surf. Sci.
324
,
305
(
1995
).
38.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
39.
E.
Bitzek
,
P.
Koskinen
,
F.
Gähler
,
M.
Moseler
, and
P.
Gumbsch
,
Phys. Rev. Lett.
97
,
170201
(
2006
).
40.
P.
Atkins
and
J.
De Paula
,
Elements of Physical Chemistry
(
Oxford University
,
New York
,
2013
).
41.
K. J.
Laidler
and
M. C.
King
,
J. Phys. Chem.
87
,
2657
(
1983
).
43.
M. A.
Liberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley
,
New York
,
1994
).
You do not currently have access to this content.