We evaluated the effect of O atoms on the postannealed BaSi2 films grown by molecular beam epitaxy. Postannealing (PA) in an Ar atmosphere at a pressure of 1.9 × 105 Pa increased the O concentration to 7 × 1020 cm−3 in the bulk region and further increased to ∼1022 cm−3 at the BaSi2/Si interface. Cracks formed during the PA process, allowing O to enter more easily to the BaSi2 films. In the x-ray photoelectron spectroscopy spectrum of the Si 2s core level measured at 10 nm from the surface, a shift of the peak related to SiOx was detected, indicating a change in the bonding state of Si and O in this region. When PA was performed in vacuum at 10−3 Pa, the photoresponsivity in the short wavelength region was enhanced, with a maximum value of 6.6 A W−1 at 790 nm. The O concentration in the film decreased in the sample annealed in vacuum, and the PL peak intensity at 0.85 eV decreased, suggesting that this was due to a decrease in O-related defects compared to the Ar atmosphere. However, agglomeration of BaSi2 caused significant surface roughness, indicating the importance of PA conditions that minimize O uptake and keep the surface smooth for improved performance of BaSi2 solar cells.

1.
M. A.
Green
,
E. D.
Dunlop
,
M.
Yoshita
,
N.
Kopidakis
,
K.
Bothe
,
G.
Siefer
, and
X.
Hao
,
Prog. Photovolt.
31
,
651
(
2023
).
2.
K.
Yoshikawa
et al,
Nat. Energy
2
,
17032
(
2017
).
4.
F.
Haase
,
C.
Hollemann
,
S.
Schäfer
,
A.
Merkle
,
M.
Rienäcker
,
J.
Krügener
,
R.
Brendel
, and
R.
Peibst
,
Sol. Energy Mater. Sol. Cells
186
,
184
(
2018
).
5.
LONGi
, see https://www.longi.com/en/news/heterojunction-back-contact-battery/ for “LONGi Sets a New World Record of 27.09% for the Efficiency of Silicon Heterojunction Back-Contact (HBC) Solar Cells, December 2023” (last accessed January 20, 2024).
6.
A.
Romeo
,
M.
Terheggen
,
D.
Abou-Ras
,
D. L.
Bätzner
,
F. J.
Haug
,
M.
Kälin
,
D.
Rudmann
, and
A. N.
Tiwari
,
Prog. Photovolt.
12
,
93
(
2004
).
7.
P.
Jackson
,
R.
Würz
,
U.
Rau
,
J.
Mattheis
,
M.
Kurth
,
T.
Schlötzer
,
G.
Bilger
, and
J. H.
Werner
,
Prog. Photovolt.
15
,
507
(
2007
).
8.
H.
Katagiri
,
K.
Jimbo
,
W. S.
Maw
,
K.
Oishi
,
M.
Yamazaki
,
H.
Araki
, and
A.
Takeuchi
,
Thin Solid Films
517
,
2455
(
2009
).
9.
P.
Jackson
,
R.
Wuerz
,
D.
Hariskos
,
E.
Lotter
,
W.
Witte
, and
M.
Powalla
,
Phys. Status Solidi
10
,
583
(
2016
).
10.
J.
Britt
and
C.
Ferekides
,
Appl. Phys. Lett.
62
,
2851
(
1993
).
11.
I.
Repins
,
M. A.
Contreras
,
B.
Egaas
,
C.
DeHart
,
J.
Scharf
,
C. L.
Perkins
,
B.
To
, and
R.
Noufi
,
Prog. Photovolt.
16
,
235
(
2008
).
13.
T.
Suemasu
,
Jpn. J. Appl. Phys.
54
,
07JA01
(
2015
).
14.
T.
Suemasu
and
N.
Usami
,
J. Phys. D: Appl. Phys.
50
,
023001
(
2017
).
15.
T.
Suemasu
and
D. B.
Migas
,
Phys. Status Solidi A
219
,
2100593
(
2022
).
16.
K.
Toh
,
T.
Saito
, and
T.
Suemasu
,
Jpn. J. Appl. Phys.
50
,
068001
(
2011
).
17.
18.
M.
Baba
,
K.
Watanabe
,
K. O.
Hara
,
K.
Toko
,
T.
Sekiguchi
,
N.
Usami
, and
T.
Suemasu
,
Jpn. J. Appl. Phys.
53
,
078004
(
2014
).
19.
S.
Yachi
,
R.
Takabe
,
H.
Takeuchi
,
K.
Toko
, and
T.
Suemasu
,
Appl. Phys. Lett.
109
,
072103
(
2016
).
20.
T.
Deng
,
T.
Sato
,
Z.
Xu
,
R.
Takabe
,
S.
Yachi
,
Y.
Yamashita
,
K.
Toko
, and
T.
Suemasu
,
Appl. Phys. Express
11
,
062301
(
2018
).
21.
T.
Deng
,
K.
Gotoh
,
R.
Takabe
,
Z.
Xu
,
S.
Yachi
,
Y.
Yamashita
,
K.
Toko
,
N.
Usami
, and
T.
Suemasu
,
J. Cryst. Growth
475
,
186
(
2017
).
22.
S.
Aonuki
,
S.
Narita
,
K.
Takayanagi
,
A.
Iwai
,
Y.
Yamashita
,
K.
Toko
, and
T.
Suemasu
,
Jpn. J. Appl. Phys.
62
,
SD1017
(
2023
).
23.
M.
Fujiwara
,
K.
Takahashi
,
Y.
Nakagawa
,
K.
Gotoh
,
T.
Itoh
,
Y.
Kurokawa
, and
N.
Usami
,
AIP Adv.
12
,
045115
(
2022
).
24.
K.
Kodama
,
R.
Takabe
,
T.
Deng
,
K.
Toko
, and
T.
Suemasu
,
Jpn. J. Appl. Phys.
57
,
050310
(
2018
).
25.
T.
Nemoto
,
S.
Aonuki
,
R.
Koitabashi
,
Y.
Yamashita
,
M.
Mesuda
,
K.
Toko
, and
T.
Suemasu
,
Appl. Phys. Express
14
,
051010
(
2021
).
26.
S.
Aonuki
et al,
Prog. Photovolt.
31
,
1360
(
2023
).
27.
K.
Kodama
,
Y.
Yamashita
,
K.
Toko
, and
T.
Suemasu
,
Appl. Phys. Express
12
,
041005
(
2019
).
28.
Y.
Yamashita
,
C. M.
Ruiz Tobon
,
R.
Santbergen
,
M.
Zeman
,
O.
Isabella
, and
T.
Suemasu
,
Sol. Energy Mater. Sol. Cells
230
,
111181
(
2021
).
29.
W.
Du
,
R.
Takabe
,
M.
Baba
,
H.
Takeuchi
,
K. O.
Hara
,
K.
Toko
,
N.
Usami
, and
T.
Suemasu
,
Appl. Phys. Lett.
106
,
122104
(
2015
).
30.
H.
Takenaka
,
H.
Hasebe
,
K.
Kido
,
R.
Koitabashi
,
M.
Mesuda
,
K.
Toko
, and
T.
Suemasu
,
Jpn. J. Appl. Phys.
62
,
SD1011
(
2023
).
32.
Y.
Yamashita
,
Y.
Takahara
,
T.
Sato
,
K.
Toko
,
A.
Uedono
, and
T.
Suemasu
,
Appl. Phys. Express
12
,
055506
(
2019
).
33.
R.
Takabe
,
T.
Deng
,
K.
Kodama
,
Y.
Yamashita
,
T.
Sato
,
K.
Toko
, and
T.
Suemasu
,
J. Appl. Phys.
123
,
045703
(
2018
).
35.
S.
Aonuki
,
K.
Toko
,
A. B.
Filonov
,
D. B.
Migas
, and
T.
Suemasu
,
Thin Solid Films
773
,
139823
(
2023
).
36.
Y.
Haku
,
S.
Aonuki
,
Y.
Yamashita
,
K.
Toko
, and
T.
Suemasu
,
Appl. Phys. Express
14
,
021003
(
2021
).
37.
M.
Pani
and
A.
Palenzona
,
J. Alloys Compd.
454
,
L1
(
2008
).
38.
S.
Narita
,
Y.
Yamashita
,
S.
Aonuki
,
N.
Saitoh
,
K.
Toko
, and
T.
Suemasu
,
J. Cryst. Growth
578
,
126429
(
2022
).
39.
J. E.
Cotter
,
J. H.
Guo
,
P. J.
Cousins
,
M. D.
Abbott
,
F. W.
Chen
, and
K. C.
Fisher
,
IEEE Trans. Electron. Devices
53
,
1893
(
2006
).
40.
A.
Descoeudres
,
Z. C.
Holman
,
L.
Barraud
,
S.
Morel
,
S.
De Wolf
, and
C.
Ballif
,
IEEE J. Photovolt.
3
,
83
(
2013
).
41.
B.
Singha
and
C. S.
Solanki
,
Mater. Res. Express
4
,
072001
(
2017
).
42.
H.
Hasebe
,
K.
Kido
,
H.
Takenaka
,
M.
Mesuda
,
K.
Toko
,
D. B.
Migas
, and
T.
Suemasu
,
Jpn. J. Appl. Phys.
62
,
SD1010
(
2023
).
43.
R.
Takabe
,
K. O.
Hara
,
M.
Baba
,
W.
Du
,
N.
Shimada
,
K.
Toko
,
N.
Usami
, and
T.
Suemasu
,
J. Appl. Phys.
115
,
193510
(
2014
).
44.
A.
Proctor
and
P. M. A.
Sherwood
,
Anal. Chem.
54
,
13
(
1982
).
45.
46.
W.
Du
,
R.
Takabe
,
S.
Yachi
,
K.
Toko
, and
T.
Suemasu
,
Thin Solid Films
629
,
17
(
2017
).
47.
G.
Hollinger
and
F. J.
Himpsel
,
Appl. Phys. Lett.
44
,
93
(
1984
).
48.
L.
Benincasa
,
H.
Hoshida
,
T.
Deng
,
T.
Sato
,
Z.
Xu
,
K.
Toko
,
Y.
Terai
, and
T.
Suemasu
,
J. Phys. Commun.
3
,
075005
(
2019
).
49.
T.
Sato
,
Y.
Yamashita
,
Z.
Xu
,
K.
Toko
,
S.
Gambarelli
,
M.
Imai
, and
T.
Suemasu
,
Appl. Phys. Express
12
,
111001
(
2019
).
50.
S.
Aonuki
,
Y.
Yamashita
,
K.
Toko
, and
T.
Suemasu
,
Thin Solid Films
738
,
138969
(
2021
).
51.
R.
Koitabashi
,
T.
Nemoto
,
Y.
Yamashita
,
M.
Mesuda
,
K.
Toko
, and
T.
Suemasu
,
J. Phys. D: Appl. Phys.
54
,
135106
(
2021
).
52.
T.
Suemasu
,
Y.
Negishi
,
K.
Takakura
,
F.
Hasegawa
, and
T.
Chikyow
,
Appl. Phys. Lett.
79
,
1804
(
2001
).
53.
M.
Takauji
,
N.
Seki
,
T.
Suemasu
,
F.
Hasegawa
, and
M.
Ichida
,
J. Appl. Phys.
96
,
2561
(
2004
).
You do not currently have access to this content.