Solar-blind photodetectors (SBPDs) based on the ultrawide-bandgap semiconductor Ga2O3 have gained attention due to their potential applications in both military and civilian domains. As technology advances, photodetectors are being improved to achieve better energy efficiency, smaller size, and better performance. Solar-blind photodetectors based on a metal-semiconductor-metal structure of amorphous gallium oxide (a-Ga2O3) films were fabricated by pulsed magnetron sputtering deposition (PSD). The photodetector based on amorphous gallium oxide has a responsivity of 71.52 A/W, a fast rising and falling response time of less than 200 ms, a photo-to-dark current ratio (PDCR) of 6.52 × 104, and an external quantum efficiency of 34 526.62%. PSD-prepared gallium oxide SBPDs demonstrate a cost-effective room temperature method for growing gallium oxide and show the advantages of growing gallium oxide.

1.
R.
Qiao
,
H.
Zhang
,
S.
Zhao
,
L.
Yuan
,
R.
Jia
,
B.
Peng
, and
Y.
Zhang
,
J. Phys. D: Appl. Phys.
55
,
383003
(
2022
).
2.
S. J.
Pearton
,
J.
Yang
,
Patrick H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
3.
D.
Kaur
and
M.
Kumar
,
Adv. Opt. Mater.
9
,
2002160
(
2021
).
4.
Z.
Feng
,
A. F. M. A. U.
Bhuiyan
,
M. R.
Karim
, and
H.
Zhao
,
Appl. Phys. Lett.
114
,
250601
(
2019
).
5.
A. S.
Pratiyush
,
S.
Krishnamoorthy
,
S. V.
Solanke
,
Z.
Xia
,
R.
Muralidharan
,
S.
Rajan
, and
D. N.
Nath
,
Appl. Phys. Lett.
110
,
221107
(
2017
).
6.
S.
Müller
,
L.
Thyen
,
D.
Splith
,
A.
Reinhardt
,
H.
von Wenckstern
, and
M.
Grundmann
,
ECS J. Solid State Sci. Technol.
8
,
Q3126
(
2019
).
7.
C.
Wang
,
W.
Fan
,
Y.
Zhang
,
P.
Kang
,
W.
Wu
,
D.
Wuu
,
S.
Lien
, and
W.
Zhu
,
Ceram. Int.
49
,
10634
(
2023
).
8.
Y.
Kokubun
,
K.
Miura
,
F.
Endo
, and
S.
Nakagomi
,
Appl. Phys. Lett.
90
,
031912
(
2007
).
9.
P. H. M. A.
Hedei
,
Z.
Hassan
, and
H. J.
Quah
,
J. Mater. Res. Technol.
16
,
139
(
2022
).
10.
11.
Y.
Huan
,
S.
Sun
,
C.
Gu
,
W.
Liu
,
S.
Ding
,
H.
Yu
,
C.
Xia
, and
D. W.
Zhang
,
Nanoscale Res. Lett.
13
,
246
(
2018
).
12.
S.
Han
et al,
J. Mater. Chem. C
7
,
11834
(
2019
).
13.
X.
Hou
et al,
Adv. Mater.
34
,
2106923
(
2021
).
14.
L.
Qian
,
Z.
Wu
,
Y.
Zhang
,
P. T.
Lai
,
X.
Liu
, and
Y.
Li
,
ACS Photonics
4
,
2203
(
2017
).
15.
G.
Bräuer
,
B.
Szyszka
,
M.
Vergöhl
, and
R.
Bandorf
,
Vacuum
84
,
1354
(
2010
).
16.
T.
Zhang
et al,
Appl. Phys. Express
15
,
022007
(
2022
).
17.
D.
Wang
,
X.
Ma
,
H.
Xiao
,
R.
Chen
,
Y.
Le
,
C.
Luan
,
B.
Zhang
, and
J.
Ma
,
Mater. Res. Bull.
149
,
111718
(
2022
).
18.
J. A.
Grant-Jacob
,
S. J.
Beecher
,
J. J.
Prentice
,
D. P.
Shepherd
,
J. I.
Mackenzie
, and
R. W.
Eason
,
Surf. Coat. Technol.
343
,
7
(
2018
).
19.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
J. Cryst. Growth
378
,
519
(
2013
).
20.
H.
Liu
et al,
J. Phys. D: Appl. Phys.
55
,
305104
(
2022
).
21.
Y.
Shang
et al,
Mater. Sci. Semicond. Process.
134
,
106040
(
2021
).
22.
J.
Wang
,
L.
Ye
,
X.
Wang
,
H.
Zhang
,
L.
Li
,
C.
Kong
, and
W.
Li
,
J. Alloys Compd.
803
,
9
(
2019
).
23.
Y.
An
,
Y.
Zhi
,
W.
Cui
,
X.
Zhao
,
Z.
Wu
,
D.
Guo
,
P.
Li
, and
W.
Tang
,
J. Nanosci. Nanotechno.
17
,
9091
(
2017
).
24.
N.
Kaur
,
Y.
Lee
,
D. Y.
Kim
, and
S.
Lee
,
Mater. Des.
148
,
30
(
2018
).
25.
X.
Li
,
S.
Chen
,
T.
Chen
, and
Y.
Liu
,
ECS Solid State Lett.
4
,
29
(
2015
).
26.
Y.
Akaltun
,
M. A.
Yildirim
,
A.
Ates
, and
M.
Yildirim
,
Opt. Commun.
284
,
2307
(
2011
).
27.
R. E.
Marotti
,
D. N.
Guerra
,
C.
Bello
,
G.
Machado
, and
E. A.
Dalchiele
,
Sol. Energy Mater. Sol. Cells
82
,
85
(
2004
).
28.
G.
Shen
,
Z.
Liu
,
C. K.
Tan
,
M.
Jiang
,
S.
Li
,
Y.
Guo
, and
W.
Tang
,
Appl. Phys. Lett.
123
,
041103
(
2023
).
29.
Y.
Wang
et al,
ACS Appl. Mater. Interfaces
11
,
45922
(
2019
).
30.
H. V.
Dung
et al,
Appl. Surf. Sci.
583
,
152526
(
2022
).
31.
V.
Zin
et al,
Surf. Coat. Technol.
476
,
130244
(
2024
).
32.
D.
Magnfalt
,
G.
Abadias
, and
K.
Sarakinos
,
Appl. Phys. Lett.
103
,
051910
(
2013
).
33.
J.
Kang
,
J.
Yun
,
Y. Y.
Oh
,
S. J.
Kim
,
M.
Kamiko
,
N. H.
Kim
, and
J. H.
Koh
,
J. Korean Ceram.
59
,
742
(
2022
).
34.
K.
Chen
,
C. C.
Hsu
,
H. C.
Yu
,
Y. M.
Peng
,
C. C.
Yang
, and
Y. K.
Su
,
IEEE Trans. Electron Devices
65
,
1817
(
2018
).
35.
K.
Gu
,
Z.
Zhang
,
K.
Tang
,
J.
Huang
,
M.
Liao
, and
L.
Wang
,
Appl. Surf. Sci.
605
,
154606
(
2022
).
36.
G.
Greczynski
,
R. T.
Haasch
,
N.
Hellgren
,
E.
Lewin
, and
L.
Hultman
,
Nat. Rev. Methods Primers
3
,
40
(
2023
).
38.
G.
Greczynski
and
L.
Hultman
,
Appl. Surf. Sci.
451
,
99
(
2018
).
39.
X.
Chen
,
W.
Mi
,
Jianwen
Wu
,
Z.
Yang
,
K.
Zhang
,
J.
Zhao
,
C.
Luan
, and
Y.
Wei
,
Vacuum
180
,
109632
(
2020
).
40.
41.
R.
Zhu
,
H.
Liang
,
H.
Bai
,
T.
Zhu
, and
Z.
Mei
,
Appl. Mater. Today.
29
,
101556
(
2022
).
42.
M.
Yu
et al,
Mater. Today Commun.
25
,
101532
(
2020
).
43.
L.
Qu
et al,
Nanotechnology
34
,
225203
(
2023
).
44.
W.
Huang
,
C.
Li
,
S.
Chang
, and
S.
Chang
,
ECS J. Solid State Sci. Technol.
8
,
Q3213
(
2019
).
45.
D.
Kaur
,
R.
Dahiya
, and
M.
Kumar
,
J. Vac. Sci. Technol. A
41
,
4043410
(
2023
).
46.
Y.
Qin
et al,
Adv. Electron. Mater.
5
,
1900389
(
2019
).
47.
S.
Cui
,
Z.
Mei
,
Y.
Zhang
,
H.
Liang
, and
X.
Du
,
Adv. Opt. Mater.
5
,
1700454
(
2017
).
48.
P. J.
Kelly
,
J.
Hisek
,
Y.
Zhou
,
R. D.
Pilkington
, and
R. D.
Arnell
,
Surf. Eng.
20
,
157
(
2004
).
49.
I.-H.
Ahn
,
J.
Kyhm
,
J.
Lee
,
S.
Cho
,
Y.
Jo
,
D. Y.
Kim
,
S. H.
Choi
, and
W.
Yang
,
Curr. Appl. Phys.
19
,
498
(
2019
).
50.
J.
Nishii
et al,
Jpn. J. Appl. Phys.
42
,
L347
(
2003
).
You do not currently have access to this content.