β-Ga2O3 is actively touted as the next ultrawide bandgap material for power electronics. To fully utilize its high intrinsic critical electric field, development of high-quality robust large-barrier height junctions is essential. To this end, various high-work function metals, metal oxides, and hole-conducting oxides have been deposited on Ga2O3, primarily formed by sputter deposition. Unfortunately, reports to date indicate that measured barrier heights often deviate from the Schottky–Mott model as well as x-ray photoelectron spectroscopy (XPS) extractions of conduction band offsets, suggesting significant densities of electrically active defects at these junctions. We report Schottky diodes made from noble metal oxides, IrO2 and RuO2, deposited by ozone molecular beam epitaxy (ozone MBE) with barrier heights near 1.8 eV. These barriers show close agreement across extraction methods and robust to high surface electric fields upward of 6 MV/cm and 60 A/cm2 reverse current without degradation.

1.
N.
Ma
,
N.
Tanen
,
A.
Verma
,
Z.
Guo
,
T.
Luo
,
H. G.
Xing
, and
D.
Jena
,
Appl. Phys. Lett.
109
,
212101
(
2016
).
3.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
D.
Jena
, and
H. G.
Xing
,
IEEE Electr. Device Lett.
41
,
107
(
2020
).
4.
Z.
Xia
et al.,
Appl. Phys. Lett.
115
,
252104
(
2019
).
5.
H.
Lee
,
N. K.
Kalarickal
,
M. W.
Rahman
,
Z.
Xia
,
W.
Moore
,
C.
Wang
, and
S.
Rajan
,
J. Comput. Electron.
19
,
1538
(
2020
).
6.
Q.
Yan
et al.,
Appl. Phys. Lett.
118
,
122102
(
2021
).
7.
Q.
He
et al.,
IEEE Electron Device Lett.
43
,
264
(
2021
).
8.
W.
Li
,
D.
Saraswat
,
Y.
Long
,
K.
Nomoto
,
D.
Jena
, and
H. G.
Xing
,
Appl. Phys. Lett.
116
,
192101
(
2020
).
9.
C.
Hou
,
R. M.
Gazoni
,
R. J.
Reeves
, and
M. W.
Allen
,
Appl. Phys. Lett.
114
,
033502
(
2019
).
10.
J. H.
Werner
and
H. H.
Guttler
,
J. Appl. Phys.
69
,
1522
(
1998
).
11.
J.
Yang
,
S.
Ahn
,
F.
Ren
,
R.
Khanna
,
K.
Bevlin
,
D.
Geerpuram
,
S. J.
Pearton
, and
A.
Kuramata
,
Appl. Phys. Lett.
110
,
142101
(
2017
).
12.
H.
Gong
,
X.
Chen
,
Y.
Xu
,
Y.
Chen
,
F.
Ren
,
B.
Liu
,
S.
Gu
,
R.
Zhang
, and
J.
Ye
,
IEEE Trans. Electron Devices
67
,
3341
(
2020
).
13.
H.
Luo
,
X.
Zhou
,
Z.
Chen
,
Y.
Pei
,
X.
Lu
, and
G.
Wang
,
IEEE Trans. Electron Devices
68
,
3991
(
2021
).
14.
G.
Alfieri
,
A.
Mihaila
,
P.
Godignon
,
J. B.
Varley
, and
L.
Vines
,
J. Appl. Phys.
130
,
025701
(
2021
).
15.
K. P.
Kepp
,
Chem. Phys. Chem.
21
,
360
(
2020
).
16.
D.
Kuo
,
H.
Paik
,
J. N.
Nelson
,
K. M.
Shen
,
D. G.
Schlom
, and
J.
Suntivich
,
J. Chem. Phys.
150
,
041726
(
2019
).
17.
D.
Saraswat
,
W.
Li
,
K.
Nomoto
,
D.
Jena
, and
H. G.
Xing
, “Very high parallel-plane surface electric field of 4.3 MV/cm in Ga 2O 3 Schottky barrier diodes with PtO x contacts,” in 2020 Device Research Conference (DRC) (IEEE, New York, 2020), pp. 1–2.
18.
W.
Li
,
K.
Nornoto
,
Z.
Hu
,
D.
Jena
, and
H. G.
Xing
, “Barrier height stability and reverse leakage mechanisms in Ni/Ga 2O 3 (001) Schottky barrier diodes,” in 2019 Device Research Conference (DRC) (IEEE, New York, 2019), pp. 159–160.
19.
W.
Li
,
K.
Nomoto
,
D.
Jena
, and
H. G.
Xing
,
Appl. Phys. Lett.
117
,
222104
(
2020
).
20.
F. A.
Padovani
and
R.
Stratton
,
Solid State Electron.
9
,
695
(
1966
).
21.
E. L.
Murphy
and
R. H.
Good
,
Phys. Rev.
102
,
1464
(
1956
).
22.
D.
Ramdin
,
H.
Huang
,
S.
Dhara
,
S.
Rajan
,
J.
Hwang
, and
L.
Brillson
, “Electric field induced defect redistribution at Ni-Ga 2O 3 interfaces,” in The 6th U.S. Gallium Oxide Workshop (AVS, Buffalo, NY, 2023).
23.
See the supplementary material online for agreements of C-V and forward-I-V barrier heights with their respective models and demonstration of Pt/IrO2 adhesion and impact on C-V extraction.

Supplementary Material

You do not currently have access to this content.