A high-density hydrogen plasma with a plasma density higher than 1010 cm−3 is produced by a radio-frequency magnetized capacitively coupled discharge using a hollow cathode, i.e., a cylindrical hole inside the powered electrode surrounded by eight cylindrical neodymium magnets. The magnetic field is calculated to discuss the electron magnetization, i.e., the Hall parameter and Larmor radius of electrons. It is found that for 3 Pa of hydrogen gas pressure the maximum of plasma density estimated from the ion saturation current measured by a Langmuir probe at the center of the hollow trench, which is surrounded by the magnets, is approximately 1.7 times higher than that without the magnets. The addition of magnets results in an expansion of the high-density plasma region inside the trench. The uniformity of the radial profile of the plasma density is better in the presence of the magnets than that without the magnets.

1.
A. M.
Funde
,
N. A.
Bakr
,
D. K.
Kamble
,
R. R.
Hawaldar
,
D. P.
Amalnerkar
, and
S. R.
Jadkar
,
Sol. Energy Mater. Sol. Cells
92
,
1217
(
2008
).
2.
H.
Liu
,
S.
Jung
,
Y.
Fujimura
,
Y.
Toyoshima
, and
H.
Shirai
,
Jpn. J. Appl. Phys.
40
,
L215
(
2001
).
3.
R. E. I.
Schropp
,
J. K.
Rath
, and
H.
Li
,
J. Cryst. Growth
311
,
760
(
2009
).
4.
H.
Shirai
,
Y.
Fujimura
, and
S.
Jung
,
Thin Solid Films
407
,
12
(
2002
).
5.
Y.-L.
Hsieh
,
L.-H.
Kau
,
H.-J.
Huang
,
C.-C.
Lee
,
Y.-K.
Fuh
, and
T. T.
Li
,
Coatings
8
,
238
(
2018
).
6.
Y.
Guo
,
T. M. B.
Ong
,
I.
Levchenko
, and
S.
Xu
,
Appl. Surf. Sci.
427
,
486
(
2018
).
7.
M.-S.
Hwang
and
C.
Lee
,
Mater. Sci. Eng., B
75
,
24
(
2000
).
8.
S.
Yamamoto
,
H.
Kodama
,
T.
Hasebe
,
A.
Shirakura
, and
T.
Suzuki
,
Diamond Relat. Mater.
14
,
1112
(
2005
).
9.
N.
Yamauchi
,
K.
Demizu
,
N.
Ueda
,
T.
Sone
,
M.
Tsujikawa
, and
Y.
Hirose
,
Thin Solid Films
506–607
,
378
(
2006
).
10.
M.
Constantinou
,
P.
Nikolaou
,
L.
Koutsokeras
,
A.
Avgeropoulos
,
D.
Moschovas
,
C.
Varotsis
,
P.
Patsalas
,
P.
Kelires
, and
G.
Constantinides
,
Nanomaterials
8
,
209
(
2018
).
11.
D.-H.
Kim
,
J. J.
Kim
,
J. W.
Park
, and
J. J.
Kim
,
J. Electrochem. Soc.
143
,
L188
(
1996
).
12.
S.
Peter
,
K.
Graupner
,
D.
Grambole
, and
F.
Richter
,
J. Appl. Phys.
102
,
053304
(
2007
).
13.
V.
Martirosyan
,
O.
Joubert
, and
E.
Despiau-Pujo
,
J. Phys. D: Appl. Phys.
52
,
055204
(
2019
).
14.
S.-N.
Hsiao
,
N.
Britun
,
T.-T.-N.
Nguyen
,
T.
Tsutsumi
,
K.
Sekine
, and
M.
Hori
,
Plasma Process. Polym.
18
,
2100078
(
2021
).
15.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Material Processing
, 2nd ed. (
John Wiley & Sons, Inc.
,
New York
,
2005
).
16.
C.
Charles
,
R. W.
Boswell
, and
R. K.
Porteous
,
J. Vac. Sci. Technol., A
10
,
398
(
1992
).
17.
M.
Surendra
and
D. B.
Graves
,
Appl. Phys. Lett.
59
,
2091
(
1991
).
18.
Y.
Ohtsu
,
Y.
Okuno
, and
H.
Fujita
,
J. Appl. Phys.
73
,
2155
(
1993
).
19.
O. A.
Popov
and
V. A.
Godyak
,
J. Appl. Phys.
57
,
53
(
1985
).
20.
D.
Vender
and
R. W.
Boswell
,
IEEE Trans. Plasma Sci.
PS-18
,
725
(
1990
).
21.
Y.
Okuno
,
Y.
Ohtsu
, and
H.
Fujita
,
Jpn. J. Appl. Phys.
31
,
1184
(
1992
).
22.
J.
Schulze
,
E.
Schüngel
, and
U.
Czarnetzki
,
J. Phys. D: Appl. Phys.
42
,
092005
(
2009
).
23.
J.
Hopwood
,
Plasma Sources Sci. Technol.
1
,
109
(
1992
).
24.
J. H.
Keller
,
Plasma Sources Sci. Technol.
5
,
166
(
1996
).
25.
K.
Suzuki
,
K.
Nakamura
,
H.
Ohkubo
, and
H.
Sugai
,
Plasma Sources Sci. Technol.
7
,
13
(
1998
).
26.
P.
Ahr
,
E.
Schüngel
,
J.
Schulze
,
T. V.
Tsankov
, and
U.
Czarnetzki
,
Plasma Sources Sci. Technol.
24
,
044006
(
2015
).
27.
K. R.
Waits
,
J. Vac. Sci. Technol.
15
,
179
(
1978
).
28.
S. M.
Rossnagel
and
J.
Hopwood
,
Appl. Phys. Lett.
63
,
3285
(
1993
).
29.
Y.
Ohtsu
,
H.
Matsuo
, and
H.
Fujita
,
Plasma Sources Sci. Technol.
5
,
344
(
1996
).
31.
32.
D.
Eremin
et al,
Plasma Sources Sci. Technol.
32
,
045008
(
2023
).
33.
S. P.
Koirala
,
H. H.
Abu-safe
,
S. L.
Mensah
,
H. A.
Naseem
, and
M. H.
Gordon
,
Surf. Coat. Technol.
203
,
602
(
2008
).
34.
J.
Roggendorf
et al,
Plasma Sources Sci. Technol.
31
,
065007
(
2022
).
35.
Y.
Ohtsu
,
S.
Imoto
,
S.
Takemura
, and
J.
Schulze
,
Vacuum
193
,
110531
(
2021
).
36.
Y.
Ohtsu
,
H.
Hiwatashi
, and
J.
Schulze
,
Jpn. J. Appl. Phys.
62
,
SL1017
(
2023
).
37.
N.
Schmidt
,
J.
Schulze
,
E.
Schüngel
, and
U.
Czarnetzki
,
J. Phys. D: Appl. Phys.
46
,
505202
(
2013
).
38.
L.
Wang
,
P.
Hartmann
,
Z.
Donkó
,
Y.-H.
Song
, and
J.
Schulze
,
J. Vac. Sci. Technol., A
39
,
063004
(
2021
).
39.
Y.
Ohtsu
and
Y.
Kawasaki
,
J. Appl. Phys.
113
,
033302
(
2013
).
41.
F. F.
Chen
,
Introduction to Plasma Physics
(
Plenum
,
New York
,
1974
), Chap. 8.
42.
D.
Eremin
et al,
Plasma Sources Sci. Technol.
32
,
045007
(
2023
).
43.
Q. Z.
Zhang
,
J. Y.
Sun
,
W. Q.
Lu
,
J.
Schulze
,
Y. Q.
Guo
, and
Y. N.
Wang
,
Phys. Rev. E
104
,
045209
(
2021
).
44.
B.
Berger
et al,
Plasma Sources Sci. Technol.
32
,
045009
(
2023
).
You do not currently have access to this content.