Atomic layer etching (ALE) schemes are often deemed economically unviable due to their slow pace and are not suited for every material/hard-mask combination. Conversely, plasma etching presents pattern profile challenges because of its inability to independently control ion and neutral flux. In this work, we introduce a new cyclic transient-based process, called transient-assisted plasma etching (TAPE). A cycle of TAPE is a short exposure step to a sustained flow of reactant before the reactant gas injection is stopped in the second step, resulting in a plasma transient. As the plasma ignites and a substantial amount of etchant remains, a chemically driven etching process occurs, akin to conventional etching. Later in the transient, the modified surface is exposed to a reduced etchant quantity and a sustained ion bombardment, in a similar way to ALE. The cointegration of conventional etching and atomic layer etching allows interesting compromises between etch control and processing time. Going for a transient plasma allows to provide the time and conditions needed for the necessary plasma-surface interactions to occur in one step. In this perspective, the mechanisms behind etch rate, profile correction, and conservation of surface composition using amorphous carbon, as a benchmark, are discussed.

2.
J. W.
Coburn
and
H. F.
Winters
,
J. Vac. Sci. Technol.
16
,
391
(
1979
).
3.
K.
Ishikawa
et al,
Jpn. J. Appl. Phys.
58
,
SE0801
(
2019
).
4.
G. S.
Oehrlein
,
R. J.
Phaneuf
, and
D. B.
Graves
,
J. Vac. Sci. Technol. B
29
,
010801
(
2011
).
5.
P.
Brichon
,
E.
Despiau-Pujo
, and
O.
Joubert
,
J. Vac. Sci. Technol. A
32
,
021301
(
2014
).
6.
C.
Petit-Etienne
,
M.
Darnon
,
P.
Bodart
,
M.
Fouchier
,
G.
Cunge
,
E.
Pargon
,
L.
Vallier
,
O.
Joubert
, and
S.
Banna
,
J. Vac. Sci. Technol. B
31
,
011201
(
2013
).
7.
M.
Honda
,
T.
Katsunuma
,
M.
Tabata
,
A.
Tsuji
,
T.
Oishi
,
T.
Hisamatsu
,
S.
Ogawa
, and
Y.
Kihara
,
J. Phys. D: Appl. Phys.
50
,
234002
(
2017
).
8.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
9.
K. J.
Kanarik
et al,
J. Vac. Sci. Technol. A
35
,
05C302
(
2017
).
10.
K. J.
Kanarik
,
S.
Tan
, and
R. A.
Gottscho
,
J. Phys. Chem. Lett.
9
,
4814
(
2018
).
11.
G. S.
Oehrlein
,
D.
Metzler
, and
C.
Li
,
ECS J. Solid State Sci.
4
,
N5041
(
2015
).
12.
J.
Li
,
S. J.
Kim
,
S.
Han
,
Y.
Kim
, and
H.
Chae
,
Plasma Process. Polym.
18
, 2100075 (
2021
).
13.
A.
Davydova
,
E.
Despiau-Pujo
,
G.
Cunge
, and
D. B.
Graves
,
J. Phys. D: Appl. Phys.
48
,
195202
(
2015
).
14.
H.
Tai
,
Y.-M.
Liao
,
W.-T.
Liu
,
W.-C.
Peng
, and
T.-H.
Ying
,
ECS Trans.
61
,
67
(
2014
).
15.
F. C.
Tai
,
S. C.
Lee
,
C. H.
Wei
, and
S. L.
Tyan
,
Mater. Trans.
47
,
1847
(
2006
).
16.
J.
Li
,
S. J.
Kim
,
S.
Han
, and
H.
Chae
,
Surf. Coat. Technol.
422
,
127514
(
2021
).
17.
D. V.
Lopaev
,
A. V.
Volynets
,
S. M.
Zyryanov
,
A. I.
Zotovich
, and
A. T.
Rakhimov
,
J. Phys. D: Appl. Phys.
50
,
075202
(
2017
).
18.
R.
Ramos
,
G.
Cunge
,
O.
Joubert
,
N.
Sadeghi
,
M.
Mori
, and
L.
Vallier
,
Thin Solid Films
515
,
4846
(
2007
).
19.
R. E.
Walkup
,
K. L.
Saenger
, and
G. S.
Selwyn
,
J. Chem. Phys.
84
,
2668
(
1986
).
20.
H. M.
Katsch
,
A.
Tewes
,
E.
Quandt
,
A.
Goehlich
,
T.
Kawetzki
, and
H. F.
Döbele
,
J. Appl. Phys.
88
,
6232
(
2000
).
21.
J. W.
Coburn
and
M.
Chen
,
J. Appl. Phys.
51
,
3134
(
1980
).
22.
S.-B.
Lee
,
J.-H.
Kim
,
G.
Kim
,
J.-W.
Park
,
B.-K.
Chae
, and
H.-H.
Choe
,
Appl. Sci. Converg. Technol.
32
,
122
(
2023
).
23.
Y.-H.
Wang
,
L.
Wei
,
Y.-R.
Zhang
, and
Y.-N.
Wang
,
Chin. Phys. B
24
,
095203
(
2015
).
24.
X.-Q.
Zhao
,
Y.-S.
Liang
, and
Y.-Y.
Guo
,
Phys. Plasmas
29
, 113511 (
2022
).
25.
C.-C.
Hsu
,
M. A.
Nierode
,
J. W.
Coburn
, and
D. B.
Graves
,
J. Phys. D: Appl. Phys.
39
,
3272
(
2006
).
26.
T. R.
Gengenbach
,
G. H.
Major
,
M. R.
Linford
, and
C. D.
Easton
,
J. Vac. Sci. Technol. A
39
,
013204
(
2021
).
27.
A.
Fujimoto
,
Y.
Yamada
,
M.
Koinuma
, and
S.
Sato
,
Anal. Chem.
88
,
6110
(
2016
).
28.
A.
Fuchs
,
J.
Scherer
,
K.
Jung
, and
H.
Ehrhardt
,
Thin Solid Films
232
,
51
(
1993
).
29.
D. F.
Franceschini
,
Thin Films Nanostruct.
30
,
217
(
2002
).
30.
S.
Wang
,
Y.
Dong
,
C.
He
,
Y.
Gao
,
N.
Jia
,
Z.
Chen
, and
W.
Song
,
RSC Adv.
7
,
53643
(
2017
).
31.
G.
Cunge
,
M.
Darnon
,
J.
Dubois
,
P.
Bézard
,
O.
Mourey
,
C.
Petit-Etienne
,
L.
Vallier
,
E.
Despiau-Pujo
, and
N.
Sadeghi
,
Appl. Phys. Lett.
108
,
093109
(
2016
).
32.
T.
Aizawa
and
T.
Fukuda
,
Surf. Coat. Technol.
215
,
364
(
2013
).
33.
O.
Joubert
,
P.
Paniez
,
J.
Pelletier
, and
M.
Pons
,
Appl. Phys. Lett.
58
,
959
(
1991
).
34.
Y.-R.
Zhang
,
Z.-Z.
Zhao
,
C.
Xue
,
F.
Gao
, and
Y.-N.
Wang
,
J. Phys. D: Appl. Phys.
52
,
295204
(
2019
).
You do not currently have access to this content.