Plasma-produced NxHy radicals facilitate the removal of native oxide layers in a semiconductor wafer surface. A remote microwave excited plasma with a NH3–N2 feed gas is used commonly to produce the active radicals. We perform a three-dimensional modeling of a microwave excited plasma operating in a surfatron mode. The device consists of a rectangular waveguide intersecting a quartz tube through which the feed gas flows. We discuss the propagation of a polarized 2.45 GHz microwave from the waveguide into the quartz tube where power is deposited into the plasma. The plasma–wave interaction is found to be highly three dimensional, with a propagating surface mode of the wave established along the dielectric tube plasma interface. Significant heating occurs on the side of the tube that directly faces the incident wave. As the flow carries the plasma-produced species down the tube, species radial profiles become increasingly diffusion controlled and axisymmetric. The dominant radicals that exit the tube are H2 and NH2, with nearly complete conversion of the feed gases to product species. The gas temperature rises above this inlet feed gas temperature and increases with increasing wave power. However, the gas temperature increase is not consequential to the overall radical yield from the plasma. The parametric study with changing pressure and input power illustrates the role of specific chemical reactions in the overall remote plasma process.

1.
C.
Cismaru
,
J. L.
Shohet
, and
J. P.
McVittie
,
Appl. Phys. Lett.
76
,
2191
(
2000
).
2.
V. M.
Donnelly
and
A.
Kornblit
,
J. Vac. Sci. Technol. A
31
,
050825
(
2013
).
3.
J. W.
Park
,
M. G.
Chae
,
D. S.
Kim
,
W. O.
Lee
,
H. D.
Song
,
C.
Choi
, and
G. Y.
Yeom
,
J. Phys. D: Appl. Phys.
51
,
445201
(
2018
).
4.
S.
Huang
,
V.
Volynets
,
J. R.
Hamilton
,
S. K.
Nam
,
I.
Song
,
S.
Lu
,
J.
Tennyson
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
36
,
021305
(
2018
).
5.
E.-J.
Song
,
J.-H.
Kim
,
J.-D.
Kwon
,
S.-H.
Kwon
, and
J.-H.
Ahn
,
Jpn. J. Appl. Phys.
57
,
106505
(
2018
).
6.
H. J.
Yeom
,
D. H.
Choi
,
Y. S.
Lee
,
J. H.
Kim
,
D. J.
Seong
,
S. J.
You
, and
H. C.
Lee
,
Plasma Sci. Technol.
21
,
064007
(
2019
).
7.
Y.
Cho
,
Y.
Kim
,
S.
Kim
, and
H.
Chae
,
J. Vac. Sci. Technol. A
38
,
022604
(
2020
).
8.
H.
Ogawa
,
T.
Arai
,
M.
Yanagisawa
,
T.
Ichiki
, and
Y.
Horiike
,
Jpn. J. Appl. Phys.
41
,
5349
(
2002
).
9.
A.
Ojha
,
H.
Pandey
, and
S.
Pandey
,
IEEE Trans. Plasma Sci.
51
,
407
(
2023
).
10.
M.
Moisan
,
Z.
Zakrzewski
,
R.
Pantel
, and
P.
Leprince
,
IEEE Trans. Plasma Sci.
12
,
203
(
1984
).
11.
A. J.
Wolf
,
T. W. H.
Righart
,
F. J. J.
Peeters
,
W. A.
Bongers
, and
M. C. M.
van de Sanden
,
Plasma Sources Sci. Technol.
29
,
025005
(
2020
).
12.
Z.
Jie
,
C.
Liu
,
S.
Huang
, and
G.
Zhang
,
J. Appl. Phys.
129
,
233302
(
2021
).
13.
M.
Moisan
,
M.
Chaker
,
Z.
Zakrzewski
, and
J.
Paraszczak
,
J. Phys. E Sci. Instrum.
20
,
1356
(
1987
).
14.
A.
Sharma
,
R. R.
Upadhyay
,
A.
Karpatne
,
V.
Subramaniam
,
D.
Breden
, and
L. L.
Raja
,
J. Phys. D: Appl. Phys.
54
,
434005
(
2021
).
15.
G. J. M.
Hagelaar
and
L. C.
Pitchford
,
Plasma Sources Sci. Technol.
14
,
722
(
2005
).
16.
D. B.
Graves
and
K. F.
Jensen
,
IEEE Trans. Plasma Sci.
14
,
78
(
1986
).
17.
S. T.
Surzhikov
and
J. S.
Shang
,
J. Comput. Phys.
199
,
437
(
2004
).
18.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley
,
New York
,
2005
).
19.
J. P.
Boeuf
,
B.
Chaudhury
, and
G. Q.
Zhu
,
Phys. Rev. Lett.
104
,
015002
(
2010
).
20.
G. J. M.
Hagelaar
,
K.
Makasheva
,
L.
Garrigues
, and
J. P.
Boeuf
,
J. Phys. D: Appl. Phys.
42
,
194019
(
2009
).
21.
Y.
Yang
and
M. J.
Kushner
,
Plasma Sources Sci. Technol.
19
,
055011
(
2010
).
22.
P. P.
Chelvam
and
L. L.
Raja
,
J. Phys. D: Appl. Phys.
50
,
474003
(
2017
).
23.
Y.
Kim
and
L. L.
Raja
,
J. Phys. D: Appl. Phys.
52
,
445203
(
2019
).
24.
L. L.
Raja
,
S.
Mahadevan
,
P. L. G.
Ventzek
, and
J.
Yoshikawa
,
J. Vac. Sci. Technol. A
31
,
031304
(
2013
).
25.
S.-M.
Ryu
,
Y.
Kim
,
D.
Pederson
,
J.
Lee
,
Y.
Kim
,
L. L.
Raja
,
J.
Uh
, and
S.-J.
Choi
, “
Simulation of chemically reacting flow in plasma native oxide cleaning process
,” in
2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
, Udine, Italy (IEEE,
2019
), pp. 1–4.
26.
R. A.
Arakoni
,
A. N.
Bhoj
, and
M. J.
Kushner
,
J. Phys. D: Appl. Phys.
40
,
2476
(
2007
).
27.
B. J.
Wood
and
H.
Wise
,
J. Phys. Chem.
66
,
1049
(
1962
).
28.
M.
Newman
, “A model for nitrogen atom recombination on a silicon dioxide surface,” Air Force Institute of Technology Report AFIT/GE/ENG/87D-50,
1987
.
29.
A.
Matsugi
,
S.
Kubota
,
Y.
Funato
,
Y.
Miura
, and
K.
Tonari
,
RSC Adv.
10
,
30806
(
2020
).
30.
J. M.
Pitarke
,
V. M.
Silkin
,
E. V.
Chulkov
, and
P. M.
Echenique
,
Rep. Prog. Phys.
70
,
1
(
2007
).
31.
F. M.
White
,
Viscous Fluid Flow
, 3rd ed. (
McGraw-Hill
,
New York
,
2005
).
32.
M.
Hayashi
, “
Electron collision cross-sections determined from beam and swarm data by Boltzmann analysis
,” in
Non-equilibrium Processes in Partially Ionized Gases
, NATO ASI Series, edited by
M.
Capitelli
and
J. N.
Bardsley
(
Springer
,
Boston
,
1990
), Vol. 220.
33.
W. L.
Morgan
, see www.lxcat.net for “Morgan (Kinema) Database” (
2024
).
34.
T. D.
Märk
and
G. H.
Dunn
,
Electron Impact Ionization
(
Springer
,
Vienna
,
1985
).
35.
V.
Tarnovsky
,
H.
Deutsch
, and
K.
Becker
,
Int. J. Mass Spectrom. Ion Process.
167–168
,
69
(
1997
).
36.
L. L.
Alves
,
J. Phys.: Conf. Ser.
565
,
012007
(
2014
).
37.
Y.
Itikawa
,
M.
Hayashi
,
A.
Ichimura
,
K.
Onda
,
K.
Sakimoto
,
K.
Takayanagi
,
M.
Nakamura
,
H.
Nishimura
, and
T.
Takayanagi
,
J. Phys.: Chem. Ref. Data
15
,
985
(
1986
).
38.
X.
Yuan
and
L. L.
Raja
,
IEEE Trans. Plasma Sci.
31
,
495
(
2003
).
39.
I.
Bray
and
T.
Stelbovics
,
Phys. Rev. A
46
,
6995
(
1992
).
40.
S. J.
Buckman
and
A. V.
Phelps
,
J. Chem. Phys.
82
,
4999
(
1985
).
41.
T.
Kimura
and
H.
Kasugai
,
J. Appl. Phys.
107
,
083308
(
2010
).
You do not currently have access to this content.