Polydimethylsiloxane (PDMS) surface was treated by nitrogen ions of 20 keV energy with 1016 ions/cm2 fluence. The surface of modified PDMS is characterized by ceramiclike structures. The treated PDMS contains free radicals. The wettability and surface energy change significantly immediately after the treatment and recover in a few days to the values of silicon dioxide or glass. Complex kinetics of growing carbonyl and hydroxyl groups and decaying silane groups is observed. The cage structure of the silicon oxide in the surface ceramiclike layer remains stable, while network structures of the Si–O increase and suboxides of the silicon decrease with storage time. The presence of not-cross-linked low molecular fractions in PDMS gives a fast recovery of the wettability and surface energy to untreated PDMS values in a few hours. This effect of low molecular fractions on the wettability and surface energy was avoided by washing out the cured PDMS in a solvent before the treatment.

1.
I.
Miranda
,
A.
Souza
,
P.
Sousa
,
J.
Ribeiro
,
E. M. S.
Castanheira
,
R.
Lima
, and
G.
Minas
,
J. Funct. Biomater.
13
,
2
(
2022
).
2.
Q.
Alkhalaf
,
S.
Pande
, and
R. R.
Palkar
, “
Review of polydimethylsiloxane (PDMS) as a material for additive manufacturing
,” in
Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering. Lecture Notes in Mechanical Engineering
, edited by
N.
Gascoin
and
E.
Balasubramanian
(
Springer
,
Singapore
,
2021
).
3.
R.
Ariati
,
F.
Sales
,
A.
Souza
,
R. A.
Lima
, and
J.
Ribeiro
,
Polymers
13
,
4258
(
2021
).
4.
F.
Akther
,
S. B.
Yakob
,
N. T.
Nguyen
, and
H. T.
Ta
,
Biosensors
10
,
182
(
2020
).
5.
M.
Dardouri
et al,
Mater. Sci. Eng. C
134
,
112563
(
2021
).
6.
J. D. P.
Valentin
,
X.-H.
Qin
,
C.
Fessele
,
H.
Straub
,
H. C.
van der Mei
,
M. T.
Buhmann
,
K.
Maniura-Weber
, and
Q.
Ren
,
J. Colloid Interface Sci.
552
,
247
(
2019
).
7.
M. S.
Birajdar
,
B. H.
Kim
,
C.
Sutthiwanjampa
,
S. H.
Kang
,
C. Y.
Heo
, and
H.
Park
,
J. Ind. Eng. Chem.
89
,
128
(
2020
).
8.
H.
Tsuji
,
M.
Izukawa
,
R.
Ikeguchi
,
R.
Kakinoki
,
H.
Sato
,
Y.
Gotoh
, and
J.
Ishikawa
,
Nucl. Instrum. Methods Phys. Res., Sect. B
206
,
507
(
2003
).
9.
Y.
Suzuki
,
M.
Kusakabe
,
J.-S.
Lee
,
M.
Kaibara
,
M.
Iwaki
, and
H.
Sasabe
,
Nucl. Instrum. Methods Phys. Res., Sect. B
65
,
142
(
1992
).
10.
Y.
Suzuki
,
Nucl. Instrum. Methods Phys. Res., Sect. B
206
,
501
(
2003
).
11.
M.
Ionescu
,
B.
Winton
,
D.
Wexler
,
R.
Siegele
,
A.
Deslantes
,
E.
Stelcer
,
A.
Atanacio
, and
D. D.
Cohen
,
Nucl. Instrum. Methods Phys. Res., Sect. B
273
,
161
(
2012
).
12.
H.
Tsuji
,
M.
Izukawa
,
R.
Ikeguchi
,
R.
Kakinoki
,
H.
Sato
,
Y.
Gotoh
, and
J.
Ishikawa
,
Nucl. Instrum. Methods Phys. Res., Sect. B
206
,
507
(
2003
).
13.
D.
Fink
,
Fundamentals of Ion-Irradiated Polymers
(
Springer
,
Berlin
,
2004
).
14.
V. B.
Odzhaev
,
I. P.
Kozlov
,
V. N.
Popok
, and
D. B.
Sviridov
,
Ion Implantation of Polymers
(
Belorussian State University
,
Minsk
,
1998
).
15.
A.
Kondyurin
and
M.
Bilek
,
Ion Beam Treatment of Polymers
(
Elsevier
,
Oxford
,
2008
).
16.
T. G.
Vladkova
,
I. L.
Keranov
,
P. D.
Dineff
,
S. Y.
Youroukov
,
I. A.
Avramova
,
N.
Krasteva
, and
G. P.
Altankov
,
Nucl. Instrum. Methods Phys. Res., Sect. B
236
,
552
(
2005
).
17.
H.
Tsuji
,
M.
Izukawa
,
R.
Ikeguchi
,
R.
Kakinoki
,
H.
Sato
,
Y.
Gotoh
, and
J.
Ishikawa
,
Appl. Surf. Sci.
235
,
182
(
2004
).
18.
C.
Zheng
,
G.
Wang
,
Y.
Chu
,
Y.
Xu
,
M.
Qiu
, and
M.
Xu
,
Nucl. Instrum. Methods Phys. Res., Sect. B
370
,
73
(
2016
).
19.
A.
Mata
,
A. J.
Fleischman
, and
S.
Roy
,
Biomed. Microdevices
7
,
281
(
2005
).
20.
J. C.
McDonald
,
D. C.
Duffy
,
J. R.
Anderson
,
D. T.
Chiu
,
H.
Wu
,
O. J. A.
Schueller
, and
G. M.
Whitesides
,
Electrophoresis
21
,
27
(
2000
).
21.
Y.
Berdichevsky
,
J.
Khandurina
,
A.
Guttman
, and
Y.-H.
Lo
,
Sens. Actuators, B
97
,
402
(
2004
).
22.
J. L.
Fritz
and
M. J.
Owen
,
J. Adhes.
54
,
33
(
1995
).
23.
H.
Hillborg
and
U. W.
Gedde
,
Polymer
39
,
1991
(
1998
).
24.
L.
Tong
,
W.
Zhou
,
Y.
Zhao
,
X.
Yu
,
H.
Wang
, and
P. K.
Chu
,
Colloids Surf., B
148
,
139
(
2016
).
25.
D.
Bodas
and
C.
Khan-Malek
,
Microelectron. Eng.
83
,
1277
(
2006
).
26.
M.
Cutroneo
,
V.
Havranek
,
P.
Malinsky
,
A.
Mackova
,
A.
Torrisi
,
J.
Flaks
,
P.
Slepicka
, and
L.
Torrisi
,
Nucl. Instrum. Methods Phys. Res., Sect. B
459
,
137
(
2019
).
27.
G.-M.
Kim
,
S.-J.
Lee
, and
C.-L.
Kim
,
Materials
14
,
4489
(
2021
).
28.
L. J.
Bellamy
,
The Infrared Spectra of Complex Molecules
, 3rd ed. (
Chapman and Hall
,
London
,
1975
).
29.
30.
L.
Bistricic
,
V.
Borjanovic
,
L.
Mikac
, and
V.
Dananic
,
Vib. Spectrosc.
68
,
1
(
2013
).
31.
I.
Zgura
,
R.
Moldovan
,
C. C.
Negrila
,
S.
Frunza
,
V. F.
Cotorobai
, and
L.
Frunza
,
J. Optoelectron. Adv. Mater.
15
,
627
(
2013
).
32.
R. M.
Pashley
and
J. A.
Kitchener
,
J. Colloid Interface Sci.
71
,
491
(
1979
).
33.
A. K.
Helmy
,
S. G.
de Bussetti
, and
E. A.
Ferreiro
,
Appl. Surf. Sci.
253
,
6878
(
2007
).
34.
B.
Jaňczuk
,
E.
Chibowski
, and
T.
Bialopiotrowicz
,
Chem Papers
40
,
349
(
1986
).
35.
P. M.
Lenahan
and
J. F.
Conley
, Jr.
,
J. Vac. Sci. Technol. B
16
,
2134
(
1998
).
36.
Y.
Nishi
,
Jpn. J. Appl. Phys.
10
,
52
(
1971
).
37.
P. J.
Caplan
,
E. H.
Poindexter
,
B. E.
Deal
, and
R. R.
Razouk
,
J. Appl. Phys.
50
,
5847
(
1979
).
38.
E. H.
Poindexter
,
P. J.
Caplan
,
B. E.
Deal
, and
R. R.
Razouk
,
J. Appl. Phys.
52
,
879
(
1981
).
39.
N. M.
Emanuel
and
A. L.
Buchachenko
,
Chemical Physics of Polymer Degradation and Stabilization
(
Brill Academic
,
Leiden
,
1987
).
40.
J. K.
Kauppinen
,
D. J.
Moffatt
,
H. H.
Mantsch
, and
D. G.
Cameron
,
Appl. Spectrosc.
35
,
271
(
1981
).
41.
A.
Goullet
,
C.
Charles
,
P.
Garcia
, and
G.
Turban
,
J. Appl. Phys.
74
,
6876
(
1993
).
42.
K. T.
Queeney
,
M. K.
Weldon
,
J. P.
Chang
,
Y. J.
Chabal
,
A. B.
Gurevich
,
J.
Sapjeta
, and
R. L.
Opila
,
J. Appl. Phys.
87
,
1322
(
2000
).
43.
G.
Spiekermann
,
M.
Steele-MacInnis
,
C.
Schmidt
, and
Sandro
Jahn
,
J. Chem. Phys.
136
,
154501
(
2012
).
44.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids, vol. 1 of Series Stopping and Ranges of Ions in Matter
(
Pergamon
,
New York
,
1984
).
45.
H.
Menhofer
and
H.
Heusinger
,
Int. J. Radiat. Appl. Instr.: Part C. Radiat. Phys. Chem.
29
,
243
(
1987
).
46.
A.
Kondyurin
,
P.
Naseri
,
K.
Fisher
,
D. R.
McKenzie
, and
M. M. M.
Bilek
,
Polym. Degrad. Stab.
94
,
638
(
2009
).
47.
G.
Mesyats
,
Y.
Klyachkin
,
N.
Gavrilov
, and
A.
Kondyurin
,
Vacuum
52
,
285
(
1999
).
48.
E. A.
Kosobrodova
,
A. V.
Kondyurin
,
K.
Fisher
,
W.
Moeller
,
D. R.
McKenzie
, and
M. M. M.
Bilek
,
Nucl. Instrum. Methods Phys. Res., Sect. B
280
,
26
(
2012
).
49.
E.
Kosobrodova
,
A.
Kondyurin
,
D. R.
McKenzie
, and
M. M. M.
Bilek
,
Nucl. Instrum. Methods Phys. Res., Sect. B
304
,
57
(
2013
).
50.
B.
Ranby
and
J. F.
Rabek
,
Photodegradation, Photo-Oxidation and Photostabilization of Polymers
(
Wiley
,
New York
,
1975
).
51.
Z.
Yongheng
and
Gu
Zhenan
,
J. Non-Cryst. Solids
352
,
4030
(
2006
).
52.
P. J.
Launer
and
B.
Arkles
, “
Infrared analysis of organosilicon compounds
,” in
Silicon Compounds: Silanes and Silicones
(
Gelest Inc.
,
Morrisville
,
2013
).
53.
N.
Hu
,
Y. Q.
Rao
,
S.
Sun
,
L.
Hou
,
P.
Wu
,
S.
Fan
, and
B.
Ye
,
Appl. Spectrosc.
70
,
1328
(
2016
).
54.
D. J.
Rosenberg
,
S.
Alayoglu
,
R.
Kostecki
, and
M.
Ahmed
,
Nanoscale Adv.
1
,
4878
(
2019
).
55.
P.
Innocenzi
,
J. Non-Cryst. Solids
316
,
309
(
2003
).
56.
B. J. G.
de Aragão
and
Y.
Messaddeq
,
J. Braz. Chem. Soc.
19
,
1582
(
2008
).
57.
I. F.
Husein
,
C.
Chan
,
S.
Qin
, and
P. K.
Chu
,
J. Phys. D: Appl. Phys.
33
,
2869
(
2000
).
58.
A.
Toth
,
I.
Bertoti
,
G.
Marletta
,
G. G.
Ferenczy
, and
M.
Mohai
,
Nucl. Instrum. Methods Phys. Res., Sect. B
116
,
299
(
1996
).
59.
G.
Marletta
,
A.
Toth
,
I.
Bertoti
,
T. M.
Duc
,
F.
Sommer
, and
K.
Ferencz
,
Nucl. Instrum. Methods Phys. Res., Sect. B
141
,
684
(
1998
).
60.
S.
Bhattacharya
,
Y.
Gao
,
Ve.
Korampally
,
M. T.
Othman
,
S. A.
Grant
,
K.
Gangopadhyay
,
S.
Gangopadhyay
,
Appl. Surf. Sci.
253
,
4220
(
2007
).
61.
C.
Satriano
,
E.
Conte
, and
G.
Marletta
,
Langmuir
17
,
2243
(
2001
).
62.
R.
Huszank
,
D.
Szikra
,
A.
Simon
,
S. Z.
Szilasi
, and
I. P.
Nagy
,
Langmuir
27
,
3842
(
2011
).
63.
A.
Groza
and
A.
Surmeian
,
J. Nanomater.
2015,
204296
(
2015
).
64.
G. A.
Parks
,
J. Geophys. Res.
89
,
3997
(
1984
).
65.
B. M. B.
Sansao
,
J. J.
Kellar
,
W. M.
Cross
,
K.
Schottler
, and
A.
Romkes
,
Powder Technol.
384
,
267
(
2021
).
66.
D.
Bodas
,
J.-Y.
Rauch
, and
C.
Khan-Malek
,
Euro. Poly. J.
44
,
2130
(
2008
).
67.
K.
Sondhi
,
S.
Hwangbo
,
Y.-K.
Yoon
,
T.
Nishida
, and
Z. H.
Fan
,
J. Micromech. Microeng.
28
,
125014
(
2018
).
68.
T.
Trantidou
,
Y.
Elani
,
E.
Parsons
, and
O.
Ces
,
Microsyst. Nanoeng.
3
,
16091
(
2017
).
69.
H.
Yasuda
,
Plasma Polymerization
(
Academic
,
New York
,
1985
).
70.
H.
Steinhauser
and
G.
Ellinghorst
,
Angew. Makromol. Chem.
120
,
177
(
1984
).
71.
V. I.
Povstugar
,
V. I.
Kodolov
, and
S. S.
Mikhailova
,
Composition and Properties of Surface of Polymer Materials
(
Khimiya
,
Moscow
,
1988
).
72.
N. D.
Lang
and
W.
Kohn
,
Phys. Rev. B
12
,
4555
(
1970
).
You do not currently have access to this content.