The effects of substrate choice, substrate temperature, Se/In flux ratio, and cooling rate after deposition on the phase composition, surface morphology, and stoichiometry of indium selenide films synthesized via molecular beam epitaxy are presented. In2Se3 films were synthesized on sapphire, Si(111) and highly oriented, pyrolytic graphite (HOPG) substrates. The phase composition, stoichiometry, and surface morphology of the films were characterized via Raman spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy, respectively. Higher substrate temperature combined with higher Se/In ratio promoted formation of β-In2Se3 over γ and/or κ-In2Se3 on all substrates. Higher Se/In ratio also independently promoted β-In2Se3 over γ and/or κ-In2Se3 on all substrates at 673 K. The lateral dimensions of In2Se3 flakes increased as the substrate temperature increased on all substrates, and the largest lateral dimensions were observed for β-In2Se3 flakes on HOPG at 973 K. No evidence of α-In2Se3 was observed in the Raman spectra of any of the films at any of the synthesis conditions in this study. β-In2Se3 films on HOPG were cooled at 1200, 120, and 12 K/h and no evidence of a β to α-In2Se3 phase transition was observed. Some evidence of β to α-In2Se3 phase transition was observed in temperature-dependent XRD of In2Se3 powders, suggesting that another parameter besides cooling rate is locking the In2Se3 films into the β-phase.

1.
F.
Xue
et al,
Adv. Mater.
33
,
2008709
(
2021
).
2.
Origin(Pro), Origin 2023b (OriginLab Corporation, Northampton, MA, 2023).
3.
C. H.
Li
,
J.
Moon
,
O. M. J.
van’t Erve
,
D.
Wickramaratne
,
E. D.
Cobas
,
M. D.
Johannes
, and
B. T.
Jonker
,
ACS Appl. Mater. Interfaces
14
,
34093
(
2022
).
4.
W.
Li
,
X.
Cai
,
N.
Valdes
,
T.
Wang
,
W.
Shafarman
,
S.
Wei
, and
A.
Janotti
,
J. Phys. Chem. Lett.
13
,
12026
(
2022
).
5.
M. S.
Claro
,
J.
Grzonka
,
N.
Nicoara
,
P. J.
Ferreira
, and
S.
Sadewasser
,
Adv. Opt. Mater.
9
,
2001034
(
2021
).
6.
J.
Jiang
,
L.
Xu
,
C.
Qiu
, and
L. M.
Peng
,
Nature
616
,
470
(
2023
).
9.
J. L.
Collins
et al,
ACS Appl. Electron. Mater.
2
,
213
(
2020
).
10.
F.
Zhang
,
Z.
Wang
,
J.
Dong
,
A.
Nie
,
J.
Xiang
,
W.
Zhu
,
Z.
Liu
, and
C.
Tao
,
ACS Nano
13
,
8004
(
2019
).
11.
Z.
Zhang
,
J.
Nie
,
Z.
Zhang
,
Y.
Yuan
,
Y.
Fu
, and
W.
Zhang
,
Adv. Mater.
34
,
2106951
(
2022
).
14.
R.
Rashid
,
F.
Chi-Chung Lin
,
S.
Wang
,
K.
Xiao
,
X.
Cui
,
T. H.
Chan
,
H. C.
Ong
,
W.
Azeem
, and
M.
Younas
,
Nanoscale
12
,
20189
(
2020
).
16.
M.
Lin
et al,
J. Am. Chem. Soc.
135
,
13274
(
2013
).
17.
N.
Balakrishnan
,
E. D.
Steer
,
E. F.
Smith
,
Z. R.
Kudrynskyi
,
Z. D.
Kovalyuk
,
L.
Eaves
,
A.
Patanè
, and
P. H.
Beton
,
2D Mater.
5
,
035026
(
2018
).
18.
N.
Balakrishnan
et al,
2D Mater.
3
,
025030
(
2016
).
19.
20.
S.
Li
et al,
J. Alloys Compd.
845
,
156270
(
2020
).
21.
H.
Lee
,
D.
Kang
, and
L.
Tran
,
Mater. Sci. Eng. B
119
,
196
(
2005
).
22.
R.
Panda
,
R.
Naik
, and
N. C.
Mishra
,
Phase Transit.
91
,
862
(
2018
).
23.
J.
Weszka
,
P.
Daniel
,
A.
Burian
,
A. M.
Burian
, and
A. T.
Nguyen
,
J. Non-Cryst. Solids
265
,
98
(
2000
).
25.
Q.
He
,
Z.
Tang
,
M.
Dai
,
H.
Shan
,
H.
Yang
,
Y.
Zhang
, and
X.
Luo
,
Nano Lett.
23
,
3098
(
2023
).
27.
Y.
Gao
,
S.
Pang
,
H.
Bao
,
X.
Peng
,
Y.
Sun
,
S.
Ren
,
D.
Meng
, and
J.
Zhang
,
Phys. Rev. Mater.
4
,
034002
(
2020
).
28.
W. F.
Io
,
S.
Yuan
,
S. Y.
Pang
,
L. W.
Wong
,
J.
Zhao
, and
J.
Hao
,
Nano Res.
13
,
1897
(
2020
).
29.
K.
Yang
et al,
Results Phys.
51
,
106643
(
2023
).
30.
P. K.
Mohapatra
,
K.
Ranganathan
,
L.
Dezanashvili
,
L.
Houben
, and
A.
Ismach
,
Appl. Mater. Today
20
,
100734
(
2020
).
31.
X.
Zhang
,
S.
Lee
,
A.
Bansal
,
F.
Zhang
,
M.
Terrones
,
T. N.
Jackson
, and
J. M.
Redwing
,
J. Cryst. Growth
533
,
125471
(
2020
).
33.
Z.
Chen
,
M.
Sun
,
H.
Li
,
B.
Huang
, and
K. P.
Loh
,
Nano Lett.
23
,
1077
(
2023
).
34.
35.
J.
Berkowitz
and
W. A.
Chupka
,
J. Chem. Phys.
45
,
4289
(
1966
).
36.
T.
Okamoto
,
A.
Yamada
, and
M.
Konagai
,
J. Cryst. Growth
175–176
,
1045
(
1997
).
37.
T.
Ohtsuka
,
T.
Okamoto
,
A.
Yamada
, and
M.
Konagai
,
Jpn. J. Appl. Phys.
38
,
668
(
1999
).
38.
T.
Ohtsuka
,
T.
Okamoto
,
A.
Yamada
, and
M.
Konagai
,
J. Lumin.
87–89
,
293
(
2000
).
39.
T.
Okamoto
,
Y.
Nakada
,
T.
Aoki
,
Y.
Takaba
,
A.
Yamada
, and
M.
Konagai
,
Phys. Status Solidi C
3
,
2796
(
2006
).
40.
N.
Kojima
,
H.
Nakamura
,
Y.
Ohshita
, and
M.
Yamaguchi
, in
IEEE 42nd Photovoltaic Specialist Conference (PVSC)
,
New Orleans, LA,
14–19 June 2015
(
IEEE
,
New York
,
2015
).
41.
M.
Yudasaka
,
T.
Matsuoka
, and
K.
Nakanishi
,
Thin Solid Films
146
,
65
(
1987
).
42.
S. J.
Rathi
,
D. J.
Smith
, and
J.
Drucker
,
Cryst. Growth Des.
14
,
4617
(
2014
).
43.
A.
Chaiken
,
K.
Nauka
,
G. A.
Gibson
,
H.
Lee
,
C. C.
Yang
,
J.
Wu
,
J. W.
Ager
,
K. M.
Yu
, and
W.
Walukiewicz
,
J. Appl. Phys.
94
,
2390
(
2003
).
44.
L.
Brahim-Otsmane
,
J. Y.
Emery
, and
M.
Eddrief
,
Thin Solid Films
237
,
291
(
1994
).
45.
46.
Z. Y.
Wang
,
X.
Guo
,
H. D.
Li
,
T. L.
Wong
,
N.
Wang
, and
H. M.
Xie
,
Appl. Phys. Lett
99
,
023112
(
2011
).
48.
D.
Nečas
and
P.
Klaptek
,
Cent. Eur. J. Phys.
10
,
181
(
2012
).
49.
S. C.
Chamber
,
L.
Wang
, and
D. B.
Baer
,
J. Vac. Sci. Technol. A
38
,
061201
(
2020
).
50.
G.
Greczynski
and
L.
Hultman
,
Angew. Chem. Int. Ed.
59
,
5002
(
2020
).
51.
N.
Fairely
et al.,
Appl. Surf. Sci. Adv.
5
, 100112 (
2021
).
52.
F.
Meng
,
S. A.
Morin
, and
S.
Jin
, “
Growth of nanomaterials by screw dislocation
,” in
Springer Handbook of Nanomaterials
, edited by
R.
Vajtai
(
Springer
,
Berlin
,
2013
).
53.
C. H.
DeGroot
and
J. S.
Moodera
,
J. Appl. Phys.
89
,
4336
(
2001
).
55.
A. H.
Goldan
,
C.
Li
,
S. J.
Pennycook
,
J.
Schneider
,
A.
Blom
, and
W.
Zhao
,
J. Appl. Phys.
120
,
135101
(
2016
).
56.
D.
Liu
,
M.
Hilse
, and
R.
Engel-Herbert
,
J. Vac. Sci. Technol. A
39
,
023413
(
2021
).
57.
NIST X-ray Photoelectron Spectroscopy Database
,
NIST Standard Reference Database Number 20,
(
National Institute of Standards and Technology
,
Gaithersburg
,
MD
,
2000
), p.
20899
.
58.
C. H.
Ho
,
C. H.
Lin
,
Y. P.
Wang
,
Y. C.
Chen
,
S. H.
Chen
, and
Y. S.
Huang
,
ACS Appl. Mater. Interfaces
5
,
2269
(
2013
).
59.
L.
Shi
,
Q.
Zhou
,
Y.
Zhao
,
Y.
Ouyang
,
C.
Ling
,
Q.
Li
, and
J.
Wang
,
J. Phys. Chem. Lett.
8
,
4368
(
2017
).
61.
D. S.
Liu
,
M.
Hilse
,
A. R.
Lupini
,
J. M.
Redwing
, and
R.
Engel-Herbert
,
ACS Appl. Nano Mater.
6
,
15029
(
2023
).
63.
M.
Küpers
,
P. M.
Konze
,
A.
Meledin
,
J.
Mayer
,
U.
Englert
,
M.
Wuttig
, and
R.
Dronskowski
,
Inorg. Chem.
57
,
11775
(
2018
).
65.
See the supplementary material online for tables of peak parameters, film surface roughness values, indium, carbon, and oxygen XPS spectra, data related to substrate preparation, and data related to temperature-dependent XRD of In2Se3 powders.

Supplementary Material

You do not currently have access to this content.