Perovskite CaIrO 3 is theoretically predicted to be a Dirac node semimetal near the Mott transition, which possesses a considerable interplay between electron correlations and spin–orbit coupling. Electron correlations can significantly tune the behavior of relativistic Dirac fermions. Here, we have grown high-quality perovskite CaIrO 3 thin films on different substrates using oxide molecular beam epitaxy to modulate both electron correlations and Dirac electron states. Through in situ angle-resolved photoemission spectroscopy, we demonstrate a systematic evolution of the bandwidth and effective mass of J eff = 1 / 2 band in perovskite CaIrO 3 induced by strain. The bandwidth of the J eff = 1 / 2 band undergoes an evident increase under in-plane compressive strain, which could be attributed to the weakening of electron correlations. The compressive strain can potentially shift the position of the Dirac node relative to the Fermi level and play a vital role in the transition from hole-type to electron-type transport characteristics. Our work provides a feasible approach for manipulating the topological Dirac electron states by engineering the strength of electron correlations.

1.
Y. F.
Nie
et al.,
Phys. Rev. Lett.
114
,
016401
(
2015
).
2.
M. M.
Sala
,
K.
Ohgushi
,
A.
Al-Zein
,
Y.
Hirata
,
G.
Monaco
, and
M.
Krisch
,
Phys. Rev. Lett.
112
,
176402
(
2014
).
3.
B.
Kim
et al.,
Phys. Rev. Lett.
101
,
076402
(
2008
).
4.
B.
Kim
,
H.
Ohsumi
,
T.
Komesu
,
S.
Sakai
,
T.
Morita
,
H.
Takagi
, and
T.-H.
Arima
,
Science
323
,
1329
(
2009
).
5.
S.-W.
Kim
,
C.
Liu
,
H.-J.
Kim
,
J.-H.
Lee
,
Y.
Yao
,
K.-M.
Ho
, and
J.-H.
Cho
,
Phys. Rev. Lett.
115
,
096401
(
2015
).
6.
M. A.
Zeb
and
H.-Y.
Kee
,
Phys. Rev. B
86
,
085149
(
2012
).
7.
J.-M.
Carter
,
V. V.
Shankar
,
M. A.
Zeb
, and
H.-Y.
Kee
,
Phys. Rev. B
85
,
115105
(
2012
).
8.
J.-M.
Carter
and
H.-Y.
Kee
,
Phys. Rev. B
88
,
035111
(
2013
).
9.
G.
Jackeli
and
G.
Khaliullin
,
Phys. Rev. Lett.
102
,
017205
(
2009
).
10.
W.
Witczak-Krempa
,
G.
Chen
,
Y. B.
Kim
, and
L.
Balents
,
Annu. Rev. Condens. Matter Phys.
5
,
57
(
2014
).
11.
S.
Moon
et al.,
Phys. Rev. Lett.
101
,
226402
(
2008
).
12.
J.
Matsuno
,
K.
Ihara
,
S.
Yamamura
,
H.
Wadati
,
K.
Ishii
,
V. V.
Shankar
,
H.-Y.
Kee
, and
H.
Takagi
,
Phys. Rev. Lett.
114
,
247209
(
2015
).
13.
Y.
Chen
,
Y.-M.
Lu
, and
H.-Y.
Kee
,
Nat. Commun.
6
,
6593
(
2015
).
14.
J.
Liu
et al.,
Phys. Rev. B
93
,
085118
(
2016
).
15.
Z.
Liu
et al.,
Sci. Rep.
6
,
30309
(
2016
).
16.
K.
Kleindienst
,
K.
Wolff
,
J.
Schubert
,
R.
Schneider
, and
D.
Fuchs
,
Phys. Rev. B
98
,
115113
(
2018
).
17.
O.
Tufte
and
P.
Chapman
,
Phys. Rev.
155
,
796
(
1967
).
18.
J.
Fujioka
et al.,
Nat. Commun.
10
,
362
(
2019
).
19.
J.-G.
Cheng
et al.,
Phys. Rev. B
88
,
205114
(
2013
).
20.
R.
Yamada
et al.,
Phys. Rev. Lett.
123
,
216601
(
2019
).
21.
M.
Masuko
,
J.
Fujioka
,
M.
Nakamura
,
M.
Kawasaki
, and
Y.
Tokura
,
APL Mater.
7
,
081115
(
2019
).
22.
K.
Nishio
,
H. Y.
Hwang
, and
Y.
Hikita
,
APL Mater.
4
,
036102
(
2016
).
23.
Z.
Sun
,
Z.
Liu
,
Z.
Liu
,
W.
Liu
,
F.
Zhang
,
D.
Shen
,
M.
Ye
, and
S.
Qiao
,
J. Synchrotron Radiat.
27
,
1388
(
2020
).
24.
Y.-C.
Yang
et al.,
Nucl. Sci. Tech.
32
,
31
(
2021
).
25.
J.-G.
Cheng
,
J.-S.
Zhou
,
J.
Goodenough
,
Y.
Sui
,
Y.
Ren
, and
M.
Suchomel
,
Phys. Rev. B
83
,
064401
(
2011
).
26.
P.
Schütz
et al.,
Phys. Rev. Lett.
119
,
256404
(
2017
).
27.
W.
Guo
,
D.
Ji
,
Z.
Gu
,
J.
Zhou
,
Y.
Nie
, and
X.
Pan
,
Phys. Rev. B
101
,
085101
(
2020
).
28.
See the supplementary material online for additional data of the CaIrO 3 film.
29.
D.
Hirai
,
J.
Matsuno
,
D.
Nishio-Hamane
, and
H.
Takagi
,
Appl. Phys. Lett.
107
,
012104
(
2015
).
30.
A.
Biswas
and
Y. H.
Jeong
,
J. Appl. Phys.
117
,
195305
(
2015
).

Supplementary Material

You do not currently have access to this content.