Deposition of silica-based thin films on carbon microfibers has long been considered a challenge. Indeed, the oxidation-sensitive nature of carbon microfibers over 550 K and their submicron-textured surface does not bode well with the required conformity of deposition best obtained by atomic layer deposition (ALD) and the thermal oxidative conditions associated with common protocols of silica ALD. Nonetheless, the use of a catalytic ALD process allowed for the deposition of amorphous alumina–silica bilayers from 445 K using trimethylaluminium and tris(tert-pentoxy)silanol (TPS). In this study, first undertaken on flat silicon wafers to make use of optical spectroscopies, the interplay between kinetics leading to a dense silica film growth was investigated in relation to the applied operation parameters. A threshold between the film catalyzed growth and the complete outgassing of pentoxy-derived compounds from TPS was found, resulting in a deposition of equivalent growth per cycle of 1.1 nm c−1, at a common ALD rate of 0.3 nm  min−1, with a flat thickness gradient. The deposition on carbon microfiber fabrics was found conformal, albeit with a thickness growth capped below 20 nm, imparted by the microfiber surface texture. STEM-EDX showed a sharp interface of the bilayer with limited carbon diffusion. The conformal and dense deposition of alumina–silica thin films on carbon microfibers holds great potential for further use as refractory oxygen barrier layers.

1.
S.
Watcharotone
et al,
Nano Lett.
7
,
1888
(
2007
).
2.
A. A.
Dameron
,
S. D.
Davidson
,
B. B.
Burton
,
P. F.
Carcia
,
R. S.
McLean
, and
S. M.
George
,
J. Phys. Chem. C
112
,
4573
(
2008
).
3.
H.-P.
Ma
,
J.-H.
Yang
,
J.-G.
Yang
,
L.-Y.
Zhu
,
W.
Huang
,
G.-J.
Yuan
,
J.-J.
Feng
,
T.-C.
Jen
, and
H.-L.
Lu
,
Nanomaterials
9
,
55
(
2019
).
4.
M.
Lu
,
H.
Xiao
,
M.
Liu
,
X.
Li
,
H.
Li
, and
L.
Sun
,
Cement Concrete Compos.
91
,
21
(
2018
).
5.
R. A.
Ovanesyan
,
E. A.
Filatova
,
S. D.
Elliott
,
D. M.
Hausmann
,
D. C.
Smith
, and
S.
Agarwal
,
J. Vac. Sci. Technol., A
37
,
060904
(
2019
).
6.
B.
Sartori
,
H.
Amenitsch
, and
B.
Marmiroli
,
Micromachines
12
, 740 (
2021
).
7.
F.
Lamouroux
,
S.
Bertrand
,
R.
Pailler
,
R.
Naslain
, and
M.
Cataldi
,
Compos. Sci. Technol.
59
,
1073
(
1999
).
8.
R.
Naslain
,
A.
Guette
,
F.
Rebillat
,
R.
Pailler
,
F.
Langlais
, and
X.
Bourrat
,
J. Solid State Chem.
177
,
449
(
2004
).
9.
C.
Verdon
,
O.
Szwedek
,
A.
Allemand
,
S.
Jacques
,
Y.
Le Petitcorps
, and
P.
David
,
J. Eur. Ceram. Soc.
34
,
879
(
2014
).
10.
P.
Dill
,
X.
Ren
,
H.
Hintersatz
,
M.
Franz
,
D.
Dentel
,
C.
Tegenkamp
, and
S.
Ebert
,
J. Vac. Sci. Technol. A
40
,
022403
(
2022
).
11.
M.
Karg
,
K. S.
Lokare
,
C.
Limberg
,
G.
Clavel
, and
N.
Pinna
,
Chem. Mater.
29
,
4920
(
2017
).
12.
13.
D.
Vijayshankar
,
L.
Mammen
,
P.
Papadopoulos
, and
D.
Vollmer
,
RSC Adv.
4
,
12737
(
2014
).
14.
G.
Cook
,
P. L.
Timms
, and
C.
Göltner-Spickermann
,
Angew. Chem. Int. Ed.
42
,
557
(
2003
).
15.
V. H.
Nguyen
et al,
Chem. Mater.
32
,
5153
(
2020
).
16.
M.
Gebhard
et al,
ACS Appl. Mater. Interfaces
10
,
7422
(
2018
).
17.
J.
Hämäläinen
,
J.
Ihanus
,
T.
Sajavaara
,
M.
Ritala
, and
M.
Leskelä
,
J. Electrochem. Soc.
158
,
P15
(
2011
).
18.
M.
Leskelä
and
M.
Ritala
,
Thin Solid Films
409
,
138
(
2002
).
19.
V.
Miikkulainen
,
M.
Leskelä
,
M.
Ritala
, and
R. L.
Puurunen
,
J. Appl. Phys.
113
,
021301
(
2013
).
20.
21.
M.
Putkonen
et al,
Thin Solid Films
558
,
93
(
2014
).
22.
G.
Fang
,
L.
Xu
,
J.
Ma
, and
A.
Li
,
Chem. Mater.
28
,
1247
(
2016
).
23.
S. E.
Potts
,
H. B.
Profijt
,
R.
Roelofs
, and
W. M. M.
Kessels
,
Chem. Vapor Depos.
19
,
125
(
2013
).
24.
B. B.
Burton
,
M. P.
Boleslawski
,
A. T.
Desombre
, and
S. M.
George
,
Chem. Mater.
20
,
7031
(
2008
).
25.
D.
Hausmann
,
J.
Becker
,
S.
Wang
, and
R. G.
Gordon
,
Science
298
,
402
(
2002
).
26.
D.-W.
Choi
,
K.-B.
Chung
, and
J.-S.
Park
,
Mater. Chem. Phys.
142
,
614
(
2013
).
27.
28.
X.
Liang
,
K. S.
Barrett
,
Y.-B.
Jiang
, and
A. W.
Weimer
,
ACS Appl. Mater. Interfaces
2
,
2248
(
2010
).
29.
S.-J.
Won
,
J. R.
Kim
,
S.
Suh
,
N.-I.
Lee
,
C. S.
Hwang
, and
H. J.
Kim
,
ACS Appl. Mater. Interfaces
3
,
1633
(
2011
).
30.
J. R.
Kim
,
H.
Lim
,
S.
Park
,
Y. J.
Choi
,
S.
Suh
,
B. S.
Yang
,
J.
Heo
, and
H. J.
Kim
,
ECS Solid State Lett.
2
,
P91
(
2013
).
31.
L.
Velleman
,
G.
Triani
,
P. J.
Evans
,
J. G.
Shapter
, and
D.
Losic
,
Microporous Mesoporous Mater.
126
,
87
(
2009
).
32.
A. B.
Renz
et al,
Mater. Sci. Semicond. Process.
122
,
105527
(
2021
).
33.
D.
Arl
,
V.
Rogé
,
N.
Adjeroud
,
B. R.
Pistillo
,
M.
Sarr
,
N.
Bahlawane
, and
D.
Lenoble
,
RSC Adv.
10
,
18073
(
2020
).
34.
C.
Sadik
,
I.-E.
El Amrani
, and
A.
Albizane
,
J. Asian Ceram. Soc.
2
,
83
(
2014
).
35.
E.
des Ligneris
et al,
ACS Appl. Eng. Mater.
1
,
2707
(
2023
).
36.
A.
Jaud
et al,
Surf. Coatings Technol.
462
,
129476
(
2023
).
37.
P.
Dill
,
F.
Pachel
,
C.
Militzer
,
A.
Held
,
G.
Puchas
,
S.
Knohl
,
W.
Krenkel
,
C.
Tegenkamp
, and
W. A.
Goedel
,
J. Vac. Sci. Technol. A
39
,
052406
(
2021
).
38.
C.
Militzer
,
P.
Dill
, and
W. A.
Goedel
,
J. Am. Ceram. Soc.
100
,
5409
(
2017
).
39.
D.
Choi
,
B.-K.
Kim
,
K.-B.
Chung
, and
J.-S.
Park
,
Mater. Res. Bull.
47
,
3004
(
2012
).
40.
R. G.
Closser
,
D. S.
Bergsman
, and
S. F.
Bent
,
ACS Appl. Mater. Interfaces
10
,
24266
(
2018
).
41.
G.
Beamson
and
D. R.
Briggs
, High resolution XPS of organic polymers: The Scienta ESCA300 Database (
1992
).
42.
Z.
Zhu
,
C.
Modanese
,
P.
Sippola
,
M.
Di Sabatino
, and
H.
Savin
,
Phys. Status Solidi A
215
,
1700864
(
2018
).
43.
R.
Escobar Galindo
,
R.
Gago
,
D.
Duday
, and
C.
Palacio
,
Anal. Bioanal. Chem.
396
,
2725
(
2010
).
44.
L.
Zhong
,
W. L.
Daniel
,
Z.
Zhang
,
S. A.
Campbell
, and
W. L.
Gladfelter
,
Chem. Vapor Depos.
12
,
143
(
2006
).
45.
A. K.
Roy
,
W.
Baumann
,
S.
Schulze
,
M.
Hietschold
,
T.
Mäder
,
D. J.
Nestler
,
B.
Wielage
, and
W. A.
Goedel
,
J. Am. Ceram. Soc.
94
,
2014
(
2011
).
46.
A. K.
Roy
,
S.
Schulze
,
M.
Hietschold
, and
W. A.
Goedel
,
Carbon
50
,
761
(
2012
).
47.
A. K.
Roy
et al,
Anal. Bioanal. Chem.
396
,
1913
(
2010
).
48.
C.
Militzer
,
J.
Buchsbaum
,
V.
Dzhagan
,
D. R. T.
Zahn
,
H.
Wulff
,
C. A.
Helm
, and
W. A.
Goedel
,
Adv. Mater. Interfaces
5
,
1800423
(
2018
).
49.
T. J.
Myers
,
J. A.
Throckmorton
,
R. A.
Borrelli
,
M.
O'Sullivan
,
T.
Hatwar
, and
S. M.
George
,
Appl. Surf. Sci.
569
,
150878
(
2021
).
50.
S. H.
Gerritsen
,
N. J.
Chittock
,
V.
Vandalon
,
M. A.
Verheijen
,
H. C. M.
Knoops
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
ACS Appl. Nano Mater.
5
,
18116
(
2022
).
51.
M.
Leskelä
,
M.
Kemell
,
K.
Kukli
,
V.
Pore
,
E.
Santala
,
M.
Ritala
, and
J.
Lu
,
Mater. Sci. Eng.: C
27
,
1504
(
2007
).
52.
M.
Junige
and
S. M.
George
,
J. Vac. Sci. Technol., A
39
, 023204 (
2021
).
53.
S.
Itoh
,
S.
Kodama
,
M.
Kobayashi
,
S.
Hara
,
H.
Wada
,
K.
Kuroda
, and
A.
Shimojima
,
ACS Nano
11
,
10289
(
2017
).
54.
J. B.
Oliver
,
P.
Kupinski
,
A. L.
Rigatti
,
A. W.
Schmid
,
J. C.
Lambropoulos
,
S.
Papernov
,
A.
Kozlov
,
C.
Smith
, and
R. D.
Hand
,
Opt. Express
20
,
16596
(
2012
).
55.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0003422 for the distribution of point acquisitions on a coated wafer by ellipsometry; additional XPS region fine scans on coated wafers; and additional SEM images of coated microfibers.

Supplementary Material

You do not currently have access to this content.