A highly uniform aluminum nitride thin film has been developed by thermal atomic layer deposition (ALD), which is designed to handle high volume of 200 mm wafers. A three-sigma thickness variation of <0.5 Å resulted from repeatable batch depositions of over 500 Å, while wafer-within-wafer (WinW) and wafer-to-wafer (WtoW) remained <5% by the optimized recipe in a 100+ wafer reactor. Various ALD deposition temperatures, film thicknesses, and substrate types of Si, quartz, and GaN/Si(111) templates have been examined for material and optical properties of an AlN film. A narrow temperature window of 300–350 °C was identified as the most suitable for the deposition process with 350 °C as the optimized one. Substrate-inhibited growth and nonlinearity in deposition rate have been observed for AlN which is possibly related to the available reaction sites at the time of nucleation on foreign substrate surfaces. A special set of experiments with a thorough exploration of XPS individual peaks such as Al2p, N1s, C1s, and O1s reveals negligible carbon and oxygen contamination with cent-percent Al–N bonding. An amorphous AlN film is evident on Si by cross-sectional TEM while a trace of polycrystalline film on GaN templates with smooth heterointerfaces to AlGaN/GaN structures. The optical bandgap is estimated to be 5.8 eV from the transmittance experiment. An in-depth refractive-index investigation shows high-density AlN by TEL Alpha-8SEiTM batch ALD which also exhibits excellent uniformity over composition and thickness with run-to-run (RtoR), WtoW, and WinW uniformity under 0.5%, highlighting the reliability and precision of the process while having high throughput.

1.
P.
Mukhopadhyay
,
U.
Banerjee
,
A.
Bag
,
S.
Ghosh
, and
D.
Biswas
,
Solid State Electron.
104
,
101
(
2015
).
2.
S.
Ghosh
,
A.
Bag
,
S. K.
Jana
,
P.
Mukhopadhyay
,
S. M.
Dinara
,
S.
Kabi
, and
D.
Biswas
,
Solid State Electron.
96
,
1
(
2014
).
3.
P.
Mukhopadhyay
et al,
J. Electron. Mater.
43
,
1263
(
2014
).
4.
T.
Yoshitaka
,
M.
Kasu
, and
T.
Makimoto
,
Nature
441
,
325
(
2006
).
5.
M.
Jia
et al,
J. Phys. D: Appl. Phys.
55
, 425101 (
2022
).
6.
H.
Mahmoodi Nasrabadi
,
M.
Mahdavi
, and
S. O. R.
Moheimani
,
IEEE Sens. J.
22
,
3957
(
2022
).
7.
K.
Ruotsalainen
,
D.
Morits
,
O. M. E.
Ylivaara
, and
J.
Kyynäräinen
,
J. Opt. Microsyst.
2
,
011006
(
2022
).
8.
H. J.
Yun
and
B. J.
Choi
,
Ceram. Int.
45
,
16311
(
2019
).
9.
P.
Mukhopadhyay
,
S.
Chowdhury
,
A.
Wowchak
,
A.
Dabiran
,
P.
Chow
, and
D.
Biswas
,
J. Vac. Sci. Technol. B
31
,
03C132
(
2013
).
10.
A. M.
Alsaad
,
Q. M.
Al-Bataineh
,
I. A.
Qattan
,
A. A.
Ahmad
,
A.
Ababneh
,
Z.
Albataineh
,
I. A.
Aljarrah
, and
A.
Telfah
,
Front. Phys.
8
,
115
(
2020
).
11.
F.
Hajakbari
,
M. M.
Larijani
,
M.
Ghoranneviss
,
M.
Aslaninejad
, and
A.
Hojabri
,
Jpn. J. Appl. Phys.
49
,
095802
(
2010
).
12.
P.
Potera
,
G.
Wisz
, and
A.
Szyller
,
Mater. Sci. Poland
36
,
717
(
2018
).
13.
A.
Thedsakhulwong
,
K.
Locharoenrat
, and
W.
Thowladda
,
Adv. Mater. Res.
631
,
186
(
2013
).
14.
H. J.
Yun
,
H.
Kim
, and
B. J.
Choi
,
Ceram. Int.
46
,
13372
(
2020
).
15.
M.
Bosund
,
T.
Sajavaara
,
M.
Laitinen
,
T.
Huhtio
,
M.
Putkonen
,
V. M.
Airaksinen
, and
H.
Lipsanen
,
Appl. Surf. Sci.
257
,
7827
(
2011
).
16.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
17.
A. W.
Ott
,
J. W.
Klaus
,
J. M.
Johnson
, and
S. M.
George
,
Thin Solid Films
292
,
135
(
1997
).
18.
M.
Ritala
,
M.
Leskelä
,
E.
Nykänen
,
P.
Soininen
, and
L.
Niinistö
,
Thin Solid Films
225
,
288
(
1993
).
19.
S.
Hasan
,
M. U.
Jewel
,
S. G.
Karakalos
,
M.
Gaevski
, and
I.
Ahmad
,
Coatings
12
,
924
(
2022
).
20.
P.
Mukhopadhyay
and
W. V.
Schoenfeld
,
J. Vac. Sci. Technol. A
38
,
013403
(
2020
).
21.
P.
Mukhopadhyay
and
W. V.
Schoenfeld
,
Appl. Opt.
58
,
D22
(
2019
).
22.
S.
Liu
,
Y.
Li
,
J.
Tao
,
R.
Tang
, and
X.
Zheng
,
Crystals
13
,
910
(
2023
).
23.
X.
Tang
,
Y.
Yuan
,
K.
Wongchotigul
, and
M. G.
Spencer
,
Appl. Phys. Lett.
70
,
3206
(
1997
).
You do not currently have access to this content.