Transition metal dichalcogenides (TMDC) are currently drawing significant interest from the scientific community as 2D materials that have intrinsically semiconducting bandgaps. One additional advantage of TMDCs for discovering and developing materials with novel electronic, electromechanical, or optoelectronic properties is that both layer composition and registry can be readily tailored. To understand how such tailoring can expand the range of properties, here we used density functional theory calculations to determine the electronic structure and piezoelectric properties of bilayer TMDC heterostructures based on MoX 2 and WX 2, where X can be S, Se, or Te. For identical layers with no misorientation with respect to one another, we find that the registry of the two layers can change the bandgap type (direct vs indirect), as well as its value (by 0.25 eV). We report similar conclusions for bilayer heterostructures in which the composition of the two layers is different. Interlayer registry also has a pronounced effect on piezoelectric properties as the piezoelectric coefficients of the two layers either nearly cancel each other or add up to yield enhanced values for the associated TMDC bilayer heterostructures. These results may serve as a guide for enhancing electronic and piezoelectric properties by stacking TMDC layers.

1.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
(
2005
).
2.
R.
Mas-Ballesté
,
C.
Gómez-Navarro
,
J.
Gómez-Herrero
, and
F.
Zamora
,
Nanoscale
3
,
20
(
2011
).
3.
M.
Xu
,
T.
Liang
,
M.
Shi
, and
H.
Chen
,
Chem. Rev.
113
,
3766
(
2013
).
4.
Se-Yang
Kim
,
Jinsung
Kwak
,
Cristian V.
Ciobanu
, and
Soon-Yong
Kwon
,
Adv. Mater.
31
,
1804939
(
2019
).
5.
A.
Ebnonnasir
,
B.
Narayanan
,
S.
Kodambaka
, and
C. V.
Ciobanu
,
Appl. Phys. Lett.
105
,
031603
(
2014
).
6.
A.
Gupta
,
T.
Sakthivel
, and
S.
Seal
,
Prog. Mater. Sci.
73
,
44
(
2015
).
7.
S.
Manzeli
,
D.
Ovchinnikov
,
D.
Pasquier
,
O. V.
Yazyev
, and
A.
Kis
,
Nat. Rev. Mater.
2
,
17033
(
2017
).
8.
A.
Ayari
,
E.
Cobas
,
O.
Ogundadegbe
, and
M. S.
Fuhrer
,
J. Appl. Phys.
101
,
014507
(
2007
).
9.
H.-P.
Komsa
,
J.
Kotakoski
,
S.
Kurasch
,
O.
Lehtinen
,
U.
Kaiser
, and
A. V.
Krasheninnikov
,
Phys. Rev. Lett.
109
,
035503
(
2012
).
10.
M.
Chhowalla
,
Z.
Liu
, and
H.
Zhang
,
Chem. Soc. Rev.
44
,
2584
(
2015
).
11.
Ashwin
Ramasubramaniam
,
Phys. Rev. B
86
,
115409
(
2012
).
12.
W. S.
Yun
,
S. W.
Han
,
S. C.
Hong
,
I. G.
Kim
, and
J. D.
Lee
,
Phys. Rev. B
85
,
033305
(
2012
).
13.
M. M.
Alyörük
,
Y.
Aierken
,
D.
Çakır
,
F. M.
Peeters
, and
C.
Sevik
,
J. Phys. Chem. C
119
,
23231
(
2015
).
14.
D.
Jariwala
,
V. K.
Sangwan
,
L. J.
Lauhon
,
T. J.
Marks
, and
M. C.
Hersam
,
ACS Nano
8
,
1102
(
2014
).
16.
17.
F.
Zahid
,
L.
Liu
,
Y.
Zhu
,
J.
Wang
, and
H.
Guo
,
AIP Adv.
3
,
052111
(
2013
).
18.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
,
699
(
2012
).
19.
K.-A. N.
Duerloo
,
M. T.
Ong
, and
E. J.
Reed
,
J. Phys. Chem. Lett.
3
,
2871
(
2012
).
20.
S.
Manna
,
P.
Gorai
,
G. L.
Brennecka
,
C. V.
Ciobanu
, and
V.
Stevanović
, “Large piezoelectric response of van der Waals layered solids,” preprint arXiv:1804.10997 (2018).
21.
22.
23.
L. K.
Tan
,
B.
Liu
,
J. H.
Teng
,
S.
Guo
,
H. Y.
Low
, and
K. P.
Loh
,
Nanoscale
6
,
10584
(
2014
).
24.
A. K.
Geim
and
I. V.
Grigorieva
,
Nature
499
,
419
(
2013
).
25.
W. J.
Yu
,
Z.
Li
,
H.
Zhou
,
Y.
Chen
,
Y.
Wang
,
Y.
Huang
, and
X.
Duan
,
Nat. Mater.
12
,
246
(
2013
).
26.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H. C.
Neto
,
Science
353
,
aac9439
(
2016
).
27.
S. J.
Haigh
, et al.,
Nat. Mater.
11
,
764
(
2012
).
28.
S.
Yu
,
Q.
Rice
,
B.
Tabibi
,
Q.
Li
, and
F. J.
Seo
,
Nanoscale
10
,
12472
(
2018
).
29.
Yulong
Chen
, et al.,
Adv. Mater.
34
,
2201630
(
2022
).
30.
L.
Dong
,
J.
Lou
, and
V. B.
Shenoy
,
ACS Nano
11
,
8242
(
2017
).
31.
Chendong
Zhang
,
Chih-Piao
Chuu
,
Xibiao
Ren
,
Ming-Yang
Li
,
Lain-Jong
Li
,
Chuanhong
Jin
,
Mei-Yin
Chou
, and
Chih-Kang
Shih
,
Sci. Adv.
3
,
e1601459
(
2017
).
32.
Y.
Liu
,
N. O.
Weiss
,
X.
Duan
,
H.-C.
Cheng
,
Y.
Huang
, and
X.
Duan
,
Nat. Rev. Mater.
1
,
16042
(
2016
).
33.
B.
Amin
,
N.
Singh
, and
U.
Schwingenschlögl
,
Phys. Rev. B
92
,
075439
(
2015
).
34.
L.
Kou
,
T.
Frauenheim
, and
C.
Chen
,
J. Phys. Chem. Lett.
4
,
1730
(
2013
).
35.
M.
Sharma
,
A.
Kumar
,
P. K.
Ahluwalia
, and
R.
Pandey
,
J. Appl. Phys.
116
,
063711
(
2014
).
36.
K.
Kośmider
and
J.
Fernández-Rossier
,
Phys. Rev. B
87
,
075451
(
2013
).
37.
S. R. J.
Likith
,
C. A.
Farberow
,
S.
Manna
,
A.
Abdulslam
,
V.
Stevanović
,
D. A.
Ruddy
,
J. A.
Schaidle
,
D. J.
Robichaud
, and
C. V.
Ciobanu
,
J. Phys. Chem. C
122
,
1223
(
2018
).
38.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
39.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
40.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
,
J. Phys.: Condens. Matter
22
,
022201
(
2009
).
41.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
,
Phys. Rev. B
83
,
195131
(
2011
).
42.
P.
Johari
and
V. B.
Shenoy
,
ACS Nano
5
,
5903
(
2011
).
43.
Th.
Böker
,
R.
Severin
,
A.
Müller
,
C.
Janowitz
,
R.
Manzke
,
D.
Voß
,
P.
Krüger
,
A.
Mazur
, and
J.
Pollmann
,
Phys. Rev. B
64
,
235305
(
2001
).
44.
W. J.
Schutte
,
J. L.
De Boer
, and
F.
Jellinek
,
J. Solid State Chem.
70
,
207
(
1987
).
45.
W. G.
Dawson
and
D. W.
Bullett
,
J. Phys. C: Solid State Phys.
20
,
6159
(
1987
).
46.
Cristian V.
Ciobanu
and
Cristian
Predescu
,
Phys. Rev. B
70
,
085321
(
2004
).
47.
C. V.
Ciobanu
,
V. B.
Shenoy
,
C. Z.
Wang
, and
K. M.
Ho
,
Surf. Sci.
544
,
L715
(
2003
).
48.
A. H.
Reshak
and
S.
Auluck
,
Phys. Rev. B
71
,
155114
(
2005
).
49.
A.
Kumar
and
P. K.
Ahluwalia
,
Eur. Phys. J. B
85
,
186
(
2012
).
50.
K. K.
Kam
and
B. A.
Parkinson
,
J. Phys. Chem.
86
,
463
(
1982
).
51.
A. J.
Grant
,
T. M.
Griffiths
,
G. D.
Pitt
, and
A. D.
Yoffe
,
J. Phys. C: Solid State Phys.
8
,
L17
(
1975
).
52.
A. V.
Kolobov
and
J.
Tominaga
, “TMDC heterostructures,” in Two-Dimensional Transition-Metal Dichalcogenides (Springer International Publishing Switzerland, 2016), pp. 447–471.
53.
F.
Wypych
and
R.
Schöllhorn
,
J. Chem. Soc., Chem. Commun.
19
,
1386
(
1992
).
54.
W.
Zhao
and
F.
Ding
,
Nanoscale
9
,
2301
(
2017
).
55.
S.
Baroni
,
P.
Giannozzi
, and
A.
Testa
,
Phys. Rev. Lett.
58
,
1861
(
1987
).
56.
S.
Baroni
,
S.
De Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
58.
W.
Voigt
,
Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik)
(
Springer
,
Leipzig
,
2014
).
59.
J. F.
Nye
,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
(
Oxford University
,
Oxford
,
1985
).
60.
H.
Zhu
, et al.,
Nat. Nanotechnol.
10
,
151
(
2015
).
61.
Peter
Sutter
,
Juan-Carlos
Idrobo
, and
Eli
Sutter
,
Adv. Funct. Mater.
31
,
2006412
(
2021
).
62.
Peter
Sutter
,
Larousse
Khosravi-Khorashad
,
Cristian V.
Ciobanu
, and
Eli
Sutter
,
Mater. Horiz.
10
,
3830
(
2023
).
63.
W.
Zhang
,
Z.
Huang
,
W.
Zhang
, and
Y.
Li
,
Nano Res.
7
,
1731
(
2014
).
64.
L.
Zhou
, et al.,
J. Am. Chem. Soc.
137
,
11892
(
2015
).
65.
Aditya
Deshpande
,
Christian
Ratsch
,
Cristian V.
Ciobanu
, and
Suneel
Kodambaka
,
J. Appl. Phys.
131
,
234302
(
2022
).
66.
Koichi
Tanaka
,
Hicham
Zaid
,
Toshihiro
Aoki
,
Aditya
Deshpande
,
Koki
Hojo
,
Cristian V.
Ciobanu
, and
Suneel
Kodambaka
,
Nano Lett.
24
,
493
(
2024
), PMID: 38148179.
67.
Sri Ranga
Jai Likith
and
Cristian V.
Ciobanu
,
Journal of Vacuum Science and Technology A
40
,
052202
(
2022
).
68.
H. S.
Mok
,
A.
Ebnonnasir
,
Y.
Murata
,
S.
Nie
,
K. F.
McCarty
,
C. V.
Ciobanu
, and
S.
Kodambaka
,
Appl. Phys. Lett.
104
,
101606
(
2014
).
You do not currently have access to this content.