Herein, we report the transport properties of Ge films. The variable-range hopping transport at low temperatures ( T 50 K ) and thermal activation transport at high temperatures ( T 50 K ) are observed in our Ge films. In the different temperature regimes, the anomalous magnetotransport properties are observed. In the low-temperature regime ( T 15 K ), the negative magnetoresistance (MR) at low field and positive MR at high field can be seen. In the moderate-temperature regime ( 15 K T 100 K ), the positive MR curve gradually evolves from a linear curve to a parabolic curve with increasing temperature, and the MR magnitude appears to be insensitive to temperature. In the high-temperature regime ( T 100 K ), the positive MR value increases with increasing temperature. By considering the angular-dependent MR, we can determine that the negative MR comes from the spin-related mechanism, and the positive MR is caused by the orbital-related mechanism. However, further study is required to determine the exact mechanisms behind the anomalous magnetotransport properties.

3.
Z.
Li
,
Y.
Zeng
,
J.
Zhang
,
M.
Zhou
, and
W.
Wu
,
Phys. Rev. B
98
,
165441
(
2018
).
4.
K.-K.
Huynh
et al,
Phys. Rev. B
99
,
195111
(
2019
).
5.
A. G.
Aronov
and
Y. V.
Sharvin
,
Rev. Mod. Phys.
59
,
755
(
1987
).
6.
H.-J.
Kim
,
K.-S.
Kim
,
J.-F.
Wang
,
M.
Sasaki
,
N.
Satoh
,
A.
Ohnishi
,
M.
Kitaura
,
M.
Yang
, and
L.
Li
,
Phys. Rev. Lett.
111
,
246603
(
2013
).
7.
I.
Zutic
,
J.
Fabian
, and
S. D.
Sarma
,
Rev. Mod. Phys.
76
,
323
(
2004
).
8.
M. N.
Alexander
and
D. F.
Holcomb
,
Rev. Mod. Phys.
40
,
815
(
1968
).
9.
Z.
Li
,
L.
Peng
,
J.
Zhang
,
J.
Li
,
Y.
Zeng
,
Z.
Zhan
, and
W.
Wu
,
Philos. Mag.
98
,
1525
(
2018
).
10.
B.
Sernelius
and
K.-F.
Berggren
,
Phys. Rev. B
19
,
6390
(
1979
).
11.
R.
Rosenbaum
,
B.
Brandt
,
S.
Hannahs
,
T.
Murphy
,
E.
Palm
, and
B.-J.
Pullum
,
Physica B
294–295
,
489
(
2001
).
12.
J.
Zhang
,
Q.
Yang
,
J.
Wu
,
J.
Li
, and
Z.
Li
,
J. Alloys Compd.
935
,
168137
(
2023
).
13.
K.
Ramadoss
,
N.
Mandal
,
X.
Dai
,
Z.
Wan
,
Y.
Zhou
,
L.
Rokhinson
,
Y. P.
Chen
,
J.
Hu
, and
S.
Ramanathan
,
Phys. Rev. B
94
,
235124
(
2016
).
14.
A.
Stupakov
,
O.
Pacherova
,
T.
Kocourek
,
M.
Jelinek
,
A.
Dejneka
, and
M.
Tyunina
,
Phys. Rev. B
99
,
085111
(
2019
).
15.
U.
Sivan
,
O.
Entin-Wohlman
, and
Y.
Imry
,
Phys. Rev. Lett.
60
,
1566
(
1988
).
16.
H.
Fukuyama
and
K.
Yosida
,
J. Phys. Soc. Jpn.
46
,
102
(
1979
).
17.
Y.
Osaka
,
J. Phys. Soc. Jpn.
47
,
729
(
1979
).
18.
G. L.
Pearson
and
H.
Suhl
,
Phys. Rev.
83
,
768
(
1951
).
20.
I. S.
Shlimak
,
M. J.
Lea
,
P.
Fozooni
,
P.
Stefanyi
, and
A. N.
Ionov
,
Phys. Rev. B
48
,
11796
(
1993
).
21.
L. J.
Neuringer
,
A. J.
Perlman
,
L. G.
Rubin
, and
Y.
Shapira
,
Rev. Sci. Instrum.
42
,
9
(
1971
).
22.
W.
Sasaki
,
J. Phys. Soc. Jpn.
20
,
825
(
1965
).
23.
H.
Roth
,
W. D.
Straub
,
W.
Bernard
, and
J. J. E.
Mulhern
,
Phys. Rev. Lett.
11
,
328
(
1963
).
24.
B. I.
Shklovskii
and
A. L.
Efros
,
Electronic Properties of Doped Semiconductors
(
Springer
,
Berlin
,
1984
).
25.
A. R.
Zanatta
and
I.
Chambouleyron
,
Phys. Rev. B
46
,
2119
(
1992
).
27.
A. L.
Efros
and
B. I.
Shklovskii
,
J. Phys. C: Solid State Phys.
8
,
L49
(
1975
).
28.
The film itself can be regarded as a heater due to its finite resistance R. The heating power of the film is I2R, where I is the drive current in the film. The electrical measurement is carried on the constant current mode. At the low temperature, the film heating power increases due to the resistance increased. At a critical temperature T, the heating power is comparable with the cooling power, and then, the local film temperature cannot be further decreased. Therefore, the film resistance tends to saturate when the environment temperature is below T.
29.
Z.
Li
,
L.
Peng
,
J.
Zhang
,
J.
Li
,
Y.
Zeng
,
D.
Qi
,
Z.
Zhan
,
M.
Zhou
, and
W.
Wu
,
Physica B
585
,
412100
(
2020
).
30.
F. J.
Morin
and
J. P.
Maita
,
Phys. Rev.
94
,
1525
(
1954
).
31.
J. S.
Blakemore
,
Semiconductor Statistics
(
Pergamon
,
Oxford
,
1962
).
32.
33.
O.
Agam
,
I. L.
Aleiner
, and
B.
Spivak
,
Phys. Rev. B
89
,
100201
(
2014
).
34.
B.
Movaghar
and
L.
Schweitzer
,
J. Phys. C: Solid State Phys.
11
,
125
(
1978
).
35.
M. M.
Parish
and
P. B.
Littlewood
,
Nature
426
,
162
(
2003
).
36.
A. A.
Abrikosov
,
Sov. Phys. JETP
29
,
746
(
1969
), available at http://jetp.ras.ru/cgi-bin/e/index/e/29/4/p746?a=list.
37.
B.
Shen
,
X.
Deng
,
G.
Kotliar
, and
N.
Ni
,
Phys. Rev. B
93
,
195119
(
2016
).
38.
Z.
Li
,
J.
Zhang
,
Y.
Zeng
,
L.
Meng
,
M.
Zhou
, and
W.
Wu
,
J. Phys.: Condens. Matter
29
,
23LT01
(
2017
).
39.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Harcourt College
, Orlando,
1976
).
40.
V. F.
Mitin
,
V. K.
Dugaev
, and
G. G.
Ihas
,
Appl. Phys. Lett.
91
,
202107
(
2007
).
41.
A.
Druzhinin
,
I.
Ostrovskii
,
Y.
Khoverko
, and
K.
Rogacki
,
J. Electron. Mater.
48
,
4934
(
2019
).
42.
B.
Cheng
,
H.
Qin
, and
J.
Hu
,
J. Phys. D: Appl. Phys.
50
,
445001
(
2017
).
43.
A. F. D.
Silva
,
M. A. T.
Sandoval
,
A.
Levine
,
E.
Levinson
,
H.
Boudinov
, and
B. E.
Sernelius
,
J. Appl. Phys.
127
,
045705
(
2020
).
You do not currently have access to this content.