Organic thin films are of great interest due to their intriguing interfacial and functional properties, especially for device applications such as thin-film transistors and sensors. As their thickness approaches single nanometer thickness, characterization and interpretation of the extracted data become increasingly complex. In this study, plasma polymerization is used to construct ultrathin films that range in thickness from 1 to 20 nm, and time-of-flight secondary ion mass spectrometry coupled with principal component analysis is used to investigate the effects of film thickness on the resulting spectra. We demonstrate that for these cross-linked plasma polymers, at these thicknesses, the observed trends are different from those obtained from thicker films with lower degrees of cross-linking: contributions from ambient carbon contamination start to dominate the mass spectrum; cluster-induced nonlinear enhancement in secondary ion yield is no longer observed; extent of fragmentation is higher due to confinement of the primary ion energy; and the size of the primary ion source also affects fragmentation (e.g., Bi1 versus Bi5). These differences illustrate that care must be taken in choosing the correct primary ion source as well as in interpreting the data.

1.
B.
Holtz
,
Y.
Wang
,
X. Y.
Zhu
, and
A.
Guo
,
Proteomics
7
,
1771
(
2007
).
2.
J. L.
Brash
and
T. A.
Horbett
,
Proteins at Interfaces II
(
American Chemical Society
, Washington, D.C.,
1995
), Vol. 602, p. 1.
3.
D. F.
Marruecos
,
D. K.
Schwartz
, and
J. L.
Kaar
,
Curr. Opin. Colloid Interface Sci.
38
,
45
(
2018
).
4.
J.
Shen
,
D.
Wang
,
E.
Langlois
,
W. A.
Barrow
,
P. J.
Green
,
C. W.
Tang
, and
J.
Shi
,
Synth. Met.
111
,
233
(
2000
).
5.
S.
Scholz
,
D.
Kondakov
,
B.
Lussem
, and
K.
Leo
,
Chem. Rev.
115
,
8449
(
2015
).
6.
Z. D.
Popovic
and
H.
Aziz
,
IEEE J. Quantum Electron.
8
,
362
(
2002
).
7.
K.
Senda
,
G. K.
Vinogradov
,
S.
Gorwadkar
, and
S.
Morita
,
J. Appl. Phys.
74
,
6425
(
1993
).
8.
M.
Li
,
B.
Popere
,
P.
Trefonas
,
A.
Heitsch
,
R.
Limary
,
R.
Katsumata
,
Y.
Zhang
, and
R.
Segalman
, “Advances in Patterning Materials and Processes XXXVI,”
Ultra-Thin Conformal Coating for Spin-on Doping
Applications, (SPIE, San Jose, CA, 2019), Vol. 10960, p. 109600R.
9.
S.
Chen
,
J.
Zheng
,
L.
Li
, and
S.
iang
,
J. Am. Chem. Soc.
127
,
14473
(
2005
).
10.
B. D.
Ratner
,
A.
Chilkoti
, and
G. P.
Lopez
, in
Plasma Deposition, Treatment, and Etching of Polymers
, edited by
R.
d'Agostino
(
Academic
,
San Diego, CA
,
1990
), p.
463
.
11.
S.
Morita
and
S.
Hattori
, in
Plasma Deposition, Treatment, and Etching of Polymers
, edited by
R.
d'Agostino
(
Academic
,
San Diego, CA
,
1990
), p.
423
.
12.
F.
Shi
,
J. Macromol. Sci. Part C
36
,
795
(
1996
).
13.
N.
Morosoff
, in
Plasma Deposition, Treatment, and Etching of Polymers
, edited by
R.
d'Agostino
(
Academic
,
San Diego, CA
,
1990
), p.
1
.
14.
C. J. M.
Stirling
,
Radicals in Organic Chemistry
(
Oldbourn
, London,
1965
).
15.
H.
Yasuda
, “Glow Discharge Polymerization,”
Thin Film Processes,
Academic Press Inc, New York,
361
(
1978
).
17.
D.
Thiry
,
S.
Konstantinidis
,
J.
Cornil
, and
R.
Snyders
,
Thin Solid Films
606
,
19
(
2016
).
18.
A.
Michelmore
,
D. A.
Steele
,
J. D.
Whittle
,
J. W.
Bradley
, and
R. D.
Short
,
RSC Adv.
3
,
13540
(
2013
).
19.
J. R.
Hollahan
and
A. T.
Bell
,
Techniques and Applications of Plasma Chemistry
(
Wiley
, New York,
1974
).
20.
H. K.
Yasuda
,
Plasma Process. Polym.
2
,
293
(
2005
).
21.
H.
Yasuda
and
T.
Hirotsu
,
J. Poly. Sci.
16
,
743
(
1978
).
22.
A.
Benninghoven
,
Angew. Chem. Int. Ed. Engl.
33
,
1023
(
1994
).
23.
B.
Hagenhoff
,
A.
Benninghoven
,
J.
Spinke
,
M.
Liley
, and
W.
Knoll
,
Langmuir
9
,
1622
(
1993
).
24.
F.
Kötter
and
A.
Benninghoven
,
Appl. Surf. Sci.
133
,
47
(
1998
).
25.
M.
Tencer
,
H.-Y.
Nie
, and
P.
Berini
,
J. Electrochem. Soc.
156
,
J386
(
2009
).
26.
J. E.
Baio
,
D. J.
Graham
, and
D. G.
Castner
,
Chem. Soc. Rev.
49
,
3278
(
2020
).
27.
D. G.
Castner
,
Biointerphases
12
, 02C301 (
2017
).
28.
S.
Muramoto
,
J.
Brison
, and
D. G.
Castner
,
Anal. Chem.
84
,
365
(
2011
).
29.
Z.
Postawa
,
B.
Czerwinski
,
M.
Szewczyk
,
E. J.
Smiley
,
N.
Winograd
, and
B. J.
Garrison
,
J. Phys. Chem. B
108
,
7831
(
2004
).
30.
Z.
Postawa
,
B.
Czerwinski
,
M.
Szewczyk
,
E. J.
Smiley
,
N.
Winograd
, and
B. J.
Garrison
,
Anal. Chem.
75
,
4402
(
2003
).
31.
B.
Czerwiński
,
R.
Samson
,
B. J.
Garrison
,
N.
Winograd
, and
Z.
Postawa
,
Vacuum
81
,
167
(
2006
).
32.
J.
Brison
,
S.
Muramoto
, and
D. G.
Castner
,
J. Phys. Chem. C
114
,
5565
(
2010
).
33.
S.
Muramoto
,
J.
Brison
, and
D. G.
Castner
,
Surf. Interface Anal.
43
,
58
(
2011
).
34.
G. P.
Lopez
and
B. D.
Ratner
,
Langmuir
7
,
766
(
1991
).
35.
C. R.
Hurley
,
R. E.
Ducker
,
G. J.
Leggett
, and
B. D.
Ratner
,
Langmuir
26
,
10203
(
2010
).
36.
G. P.
Löpez
,
B. D.
Ratner
,
C. D.
Tidwell
,
C. L.
Haycox
,
R. J.
Rapoza
, and
T. A.
Horbett
,
J. Biomed. Mater. Res.
26
,
415
(
1992
).
37.
M.
Shen
,
L.
Martinson
,
M. S.
Wagner
,
D. G.
Castner
,
B. D.
Ratner
, and
T. A.
Horbett
,
J. Biomater. Sci. Polym. Ed.
13
,
367
(
2002
).
38.
L.
Cao
,
M.
Chang
,
C.-Y.
Lee
,
D. G.
Castner
,
S.
Sukavaneshvar
,
B. D.
Ratner
, and
T. A.
Horbett
,
J. Biomed. Mater. Res. Part A
81A
,
827
(
2007
).
39.
E. E.
Johnston
,
J. D.
Bryers
, and
B. D.
Ratner
,
Langmuir
21
,
870
(
2005
).
40.
G. J.
Vandentop
,
M.
Kawasaki
,
R. M.
Nix
,
I. G.
Brown
,
M.
Salmeron
, and
G. A.
Somorjai
,
Phys. Rev. B
41
,
3200
(
1990
).
41.
J. C.
Angus
and
C. C.
Hayman
,
Science
241
,
913
, (
1988
).
42.
H. C.
Tsai
and
D. B.
Bogy
,
J. Vac. Sci. Technol. A
5
,
3287
(
1987
).
43.
J.
Fink
,
T.
Müller-Heinzerling
,
J.
Pflüger
,
B.
Scheerer
,
B.
Dischler
,
P.
Koidl
,
A.
Bubenzer
, and
R. E.
Sah
,
Phys. Rev. B
30
,
4713
(
1984
).
44.
P.
Couderc
and
Y.
Catherine
,
Thin Solid Films
146
,
93
(
1987
).
45.
J. L. S.
Lee
,
I. S.
Gilmore
, and
M. P.
Seah
,
Surf. Interface Anal.
44
,
1
(
2012
).
46.
M. S.
Wagner
and
D. G.
Castner
,
Langmuir
17
,
4649
(
2001
).
47.
M. S.
Wagner
,
T. A.
Horbett
, and
D. G.
Castner
,
Biomaterials
24
,
1897
(
2003
).
48.
D. J.
Graham
and
D. G.
Castner
,
Biointerphases
7
,
49
(
2012
).
49.
D. J.
Graham
,
M. S.
Wagner
, and
D. G.
Castner
,
Appl. Surf. Sci.
252
,
6860
(
2006
).
50.
G.
Nagy
and
A. V.
Walker
,
Int. J. Mass Spectrom.
262
,
144
(
2007
).
51.
D. J.
Menzies
,
A.
Nelson
,
H.-H.
Shen
,
K. M.
McLean
,
J. S.
Forsythe
,
T.
Gengenbach
,
C.
Fong
, and
B. W.
Muir
,
J. R. Soc. Interface
9
,
1008
(
2012
).
52.
See supplementary material online for examples from the raw data that demonstrate that characteristic tetraglyme peaks have a higher intensity in spectra produced from Bi primary ions while hydrocarbon peaks have a higher intensity in spectra produced from C60 primary ions.
53.
S.
Sheraz née Rabbani
,
I.
Berrueta Razo
,
T.
Kohn
,
N. P.
Lockyer
, and
J. C.
Vickerman
,
Anal. Chem.
87
,
2367
(
2015
).
54.
Z.
Postawa
, see https://users.uj.edu.pl/∼ufpostaw/en/animations.html for “Animations of sputtering events.”
55.
G.
Zorn
,
F. I.
Simonovsky
,
B. D.
Ratner
, and
D. G.
Castner
,
Adv. Healthcare Mater.
11
,
2100894
(
2022
).
56.
A. K.
Sharma
and
H.
Yasuda
,
J. Appl. Polym. Sci.
38
,
741
(
1989
).
58.
R. N.
Rudolph
and
J. H.
Moore
,
Plasma Chem. Plasma Process.
10
,
451
(
1990
).
59.
M. P.
Seah
,
J. Phys. Chem. C
117
,
12622
(
2013
).

Supplementary Material

You do not currently have access to this content.