The reactive direct current (DC) magnetron sputtering discharges of Mg–CF4, Mg–O2, and Ti–O2 were investigated using probe measurements as a function of reactive gas flow ratio. The emission spectroscopy, which was conducted before the probe measurements, demonstrates that all the three DC discharges transit from nonreactive to reactive discharge mode with increasing reactive gas flow ratio. The probe measurements show that the plasma potentials of the Mg–O2 and Ti–O2 DC discharges slightly increase or remain almost constant with increasing reactive gas flow ratio, whereas that of the Mg–CF4 DC discharge drastically decreases at the mode transition. For the same change in reactive gas flow ratio, the discharge voltage of the Mg–CF4 DC discharge slightly increases and that of the Mg–O2 DC discharge drastically increases at the mode transition, whereas that of the Ti–O2 DC discharge slightly decreases at the mode transition. The changes in the cathode sheath potential difference at the mode transition differ between the Mg–CF4 and Ti–O2 DC discharges and the Mg–O2 DC discharge because of the difference in the probability of secondary electron emission at the cathode surface; furthermore, the changes in the anode sheath potential difference at the mode transition differ between the Mg–CF4 DC discharge and the Mg–O2 and Ti–O2 DC discharges because of the difference in the probability of negative-ion formation in the plasma bulk. The most informative results obtained in this study were the differences in the potential differences at the cathode and anode sheaths among the Mg–CF4, Mg–O2, and Ti–O2 DC discharges. They well demonstrated the effects of the change in secondary-emitted species at the cathode surface and the change in reactive gas concentration in the plasma on the potential configuration.

1.
J. E.
Greene
,
J. Vac. Sci. Technol., A
35
,
05C204
(
2017
).
2.
G.
Bräuer
,
B.
Szyszka
,
M.
Vergöhl
, and
R.
Bandorf
,
Vacuum
84
,
1354
(
2010
).
3.
P. M.
Martin
, “
Chapter 1—Deposition technologies: An overview
,” in
Handbook of Deposition Technologies for Films and Coating
, edited by
P. M.
Martin
(
William Andrew Publishing
,
Oxford
,
2010
), pp.
253
296
. .
4.
In some cases, reactive sputtering includes the deposition method using a combination of a sub-stoichiometric compound (ceramic) target and reactive gas.
5.
J.
Sarkar
,
Sputtering Materials for VLSI and Thin Film Devices
(
William Andrew Publishing
,
Oxford
,
2010
). .
6.
D.
Depla
,
S.
Mahieu
, and
J. E.
Greene
, “
Chapter 5—Sputter deposition processes
,” in
Handbook of Deposition Technologies for Films and Coating
, edited by
P. M.
Martin
(
William Andrew Publishing
,
Oxford
,
2010
), pp.
253
296
. .
7.
P. J.
Kelly
and
R. D.
Arnell
,
Vacuum
56
,
159
(
2000
).
8.
S. J.
Nadel
,
P.
Greene
,
J.
Rietzel
, and
J.
Strümpfel
,
Thin Solid Films
442
,
11
(
2003
).
9.
J.
Musil
,
P.
Baroch
,
J.
Vlček
,
K. H.
Nam
, and
J. G.
Han
,
Thin Solid Films
475
,
208
(
2005
).
10.
I.
Petrov
,
L.
Hultman
,
U.
Helmersson
,
J.-E.
Sundgren
, and
J. E.
Greene
,
Thin Solid Films
169
,
299
(
1989
).
11.
I.
Petrov
,
F.
Adibi
,
J. E.
Greene
,
L.
Hultman
, and
J-E
Sundgren
,
Appl. Phys. Lett.
63
,
36
(
1993
).
12.
I.
Petrov
,
A.
Myers
,
J. E.
Greene
, and
J. R.
Abelson
,
J. Vac. Sci. Technol., A
12
,
2846
(
1994
).
13.
L.
Hultman
,
J-E
Sundgren
,
J. E.
Greene
,
D. B.
Bergstrom
, and
I.
Petrov
,
J. Appl. Phys.
78
,
5395
(
1995
).
14.
J. E.
Greene
,
J-E
Sundgren
,
L.
Hultman
,
I.
Petrov
, and
D. B.
Bergstrom
,
Appl. Phys. Lett.
67
,
2928
(
1995
).
15.
G.
Greczynski
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
J. Vac. Sci. Technol., A
37
,
060801
(
2019
).
16.
E.
Kusano
,
S.
Baba
, and
A.
Kinbara
,
J. Vac. Sci. Technol., A
10
,
1696
(
1992
).
17.
E.
Kusano
and
A.
Kinbara
,
J. Appl. Phys.
87
,
2015
(
2000
).
18.
J. T.
Gudmundsson
and
A.
Hecimovic
,
Plasma Sources Sci. Technol.
26
,
123001
(
2017
).
19.
D.
Depla
,
S.
Mahieu
, and
R. D.
Gryse
,
Thin Solid Films
517
,
2825
(
2009
).
20.
D.
Depla
,
S.
Heirwegh
,
S.
Mahieu
,
J.
Haemers
, and
R.
De Gryse
,
J. Appl. Phys.
101
,
013301
(
2007
).
21.
W. D.
Sproul
,
D. J.
Christie
, and
D. C.
Carter
,
Thin Solid Films
491
,
1
(
2005
).
22.
J.
Brindley
,
B.
Daniel
,
V.
Bellido-Gonzalez
, and
F.
Papa
, “
Automated tuning of reactive sputtering control systems
,” in
57th Annual Technical Conference Proceedings of the Society of Vacuum Coaters
,
Chicago, IL
,
3–8 May
(Society of Vacuum Coaters, Albuquerque, N. M.,
2014
), pp.
445
449
.
23.
J. C.
Rienstra-Kiracofe
,
G. S.
Tschumper
,
H. F.
Schaefer
,
S.
Nandi
, and
G. B.
Ellison
,
Chem. Rev.
102
,
231
(
2002
).
24.
CRC Handbook of Chemistry and Physics
, 103th ed., edited by
W. M.
Haynes
(
CRC
,
Boca Raton, FL
,
2022
), pp.
10-54
10-75
(Electron Affinities).
25.
L.
Martinů
,
H.
Biederman
, and
L.
Holland
,
Vacuum
35
,
531
(
1985
).
26.
S.
Mertin
,
L.
Marot
,
C. S.
Sandu
,
R.
Steiner
,
J. L.
Scartezzini
, and
P.
Muralt
,
Adv. Eng. Mater.
17
,
1652
(
2015
).
27.
C.
Zhao
,
C.
Ma
,
J.
Liu
,
Z.
Liu
, and
Y.
Chen
,
Mater. Res. Express
7
,
026415
(
2020
).
28.
C.
Ma
,
C.
Zhao
,
J.
Liu
,
Z.
Liu
, and
Y.
Chen
,
Chem. Phys. Lett.
762
,
138086
(
2021
).
29.
E.
Kusano
,
J. Appl. Phys.
129
,
233305
(
2021
).
30.
Chapter 4 DC glow discharge
,” in
Glow Discharge Processes: Sputtering and Plasma Etching
, edited by
B.
Chapman
(
Wiley
,
New York
,
1980
).
31.
Chapter 14, Direct current (DC) discharges
,’ in
Principles of Plasma Discharges and Materials Processing
, 2nd ed., edited by
M. A.
Lieberman
and
A. J.
Lichtenberg
(
Wiley
,
New York
,
2005
).
32.
J. Y.
Lim
,
J. S.
Oh
,
B. D.
Ko
,
J. W.
Cho
,
S. O.
Kang
,
G.
Cho
,
H. S.
Uhm
, and
E. H.
Choi
,
J. Appl. Phys.
94
,
764
(
2003
).
33.
T. J.
Vink
,
A. R.
Balkenende
,
R. G. F. A.
Verbeek
,
H. A. M.
van Hal
, and
S. T.
de Zwart
,
Appl. Phys. Lett.
80
,
2216
(
2002
).
34.
J. L.
Sullivan
,
S. O.
Saied
, and
I.
Bertoti
,
Vacuum
42
,
1203
(
1991
).
35.
C.
Corbella
,
A.
Marcak
,
T.
de los Arcos
, and
A.
von Keudell
,
J. Phys. D: Appl. Phys.
49
,
16LT01
(
2016
).
36.
R. R.
Reddy
,
Y. N.
Ahammed
,
P. A.
Azeem
,
K. R.
Gopal
, and
T. V. R.
Rao
,
J. Non-Cryst. Solids
286
,
169
(
2001
).
37.
G.
Campet
,
J.
Portier
, and
M. A.
Subramanian
,
Mater. Lett.
58
,
437
(
2004
).
38.
S. F.
Matar
,
G.
Campet
, and
M. A.
Subramanian
,
Prog. Solid State Chem.
39
,
70
(
2011
).
39.
V.
Mansfeldova
,
M.
Zlamalova
,
H.
Tarabkova
,
P.
Janda
,
M.
Vorokhta
,
L.
Piliai
, and
L.
Kavan
,
J. Phys. Chem. C
125
,
1902
(
2021
).
40.
L.
Giordano
,
F.
Cinquini
, and
G.
Pacchioni
,
Phys. Rev. B
73
,
045414
(
2006
).
41.
S. M.
Rossnagel
and
H. R.
Kaufman
,
J. Vac. Sci. Technol., A
4
,
1822
(
1986
).
42.
D. J.
Ball
,
J. Appl. Phys.
43
,
3047
(
1972
).
43.
I.
Ivanov
,
P.
Kazansky
,
L.
Hultman
, and
J. E.
Sundgren
,
J. Phys. D: Appl. Phys.
27
,
280
(
1994
).
44.
T. E.
Sheridan
and
J.
Goree
,
Phys. Rev. E
50
,
2991
(
1994
).
45.
T. E.
Sheridan
,
M. J.
Goeckner
, and
J.
Goree
,
J. Vac. Sci. Technol., A
16
,
2173
(
1998
).
46.
P.
Špatenka
,
J.
Vlček
, and
J.
Blažek
,
Vacuum
55
,
165
(
1999
).
47.
H.
Fujita
,
S.
Yagura
,
H.
Ueno
, and
M.
Nagano
,
J. Phys. D: Appl. Phys.
19
,
1699
(
1986
).
48.
I.
Petrov
,
V.
Orlinov
,
I.
Ivanov
, and
J.
Kourtev
,
Contrib. Plasma Phys.
28
,
157
(
1988
).
49.
M. V.
Spolaore
et al,
Surf. Coat. Technol.
116-119
,
1083
(
1999
).
50.
F. F.
Chen
, “
Electric probes
,” in
Plasma Diagnostic Techniques
, edited by
R. H.
Huddlestone
and
S. L.
Leonard
(
Academic
,
New York
,
1965
), Chap. 4, pp.
113
200
.
51.
H.
Amemiya
,
J. Phys. Soc. Jpn.
57
,
887
(
1988
).
53.
CRC Handbook of Chemistry and Physics
, 97th ed., edited by
W. M.
Haynes
(
CRC
,
Boca Raton, FL
,
2016
), pp.
10-43
10-44
.
54.
CRC Handbook of Chemistry and Physics
, 97th ed., edited by
W. M.
Haynes
(
CRC
,
Boca Raton, FL
,
2016
), pp.
10-57
10-59
.
55.
CRC Handbook of Chemistry and Physics
, 97th ed., edited by
W. M.
Haynes
(
CRC
,
Boca Raton, FL
,
2016
), pp.
10-79
10-80
.
56.
T. L.
Porter
,
D. E.
Mann
, and
N.
Acquista
,
J. Mol. Spectrosc.
16
,
228
(
1965
).
57.
T. Y.
Jung
,
D. H.
Kim
, and
H. B.
Lim
,
Bull. Korean Chem. Soc.
27
,
373
(
2006
).
58.
CRC Handbook of Chemistry and Physics
, 97th ed., edited by
W. M.
Haynes
(
CRC
,
Boca Raton, FL, USA
,
2016
), pp.
10-23
10-24
.
59.
B. L.
Peko
,
I. V.
Dyakov
,
R. L.
Champion
,
M. V. V. S.
Rao
, and
J. K.
Olthoff
,
Phys. Rev. E
60
,
7449
(
1999
).
60.
J-P.
Booth
,
Plasma Sources Sci. Technol.
8
,
249
(
1999
).
62.
63.
Y.
Wan
et al,
ACS Appl. Mater. Interfaces
8
,
14671
(
2016
).
64.
R. D.
Johnson
III
, editor, NIST Computational chemistry comparison and benchmark database (NIST Standard Reference Database Number 101, Release 20, August 2019), see http://cccbdb.nist.gov/elecaff1x.asp (last accessed December 23, 2023). Affinities.
65.
H. B.
Michaelson
,
J. Appl. Phys.
48
,
4729
(
1977
).
66.
F.
Haase
,
D.
Manova
,
D.
Hirsch
,
S.
Mändl
, and
H.
Kersten
,
Plasma Sources Sci. Technol.
27
,
044003
(
2018
).
67.
J.
Weng
and
E.
Veje
,
Mater. Sci. Eng.
69
,
37
(
1985
).
68.
M. O.
Aboelfotoh
and
J. A.
Lorenzen
,
J. Appl. Phys.
48
,
4754
(
1977
).
69.
Chapter 3 Atomic collisions
,” in
Principles of Plasma Discharges and Materials Processing
, 1st ed., edited by
M. A.
Lieberman
and
A. J.
Lichtenberg
(
Wiley
,
New York
,
1994
).
70.
Chapter 6 DC sheath
,” in
Principles of Plasma Discharges and Materials Processing
, 1st ed., edited by
M. A.
Lieberman
and
A. J.
Lichtenberg
(
Wiley
,
New York
,
1994
).
71.
C.
Huo
,
D.
Lundin
,
M. A.
Raadu
,
A.
Anders
,
J. T.
Gudmundsson
, and
N.
Brenning
,
Plasma Sources Sci. Technol.
22
,
045005
(
2013
).
72.
N.
Brenning
,
J. T.
Gudmundsson
,
D.
Lundin
,
T.
Minea
,
M. A.
Raadu
, and
U.
Helmersson
,
Plasma Sources Sci. Technol.
25
,
065024
(
2016
).
73.
H. M.
Joh
,
T. H.
Chung
, and
K. S.
Chung
,
Thin Solid Films
518
,
6686
(
2010
).
74.
S.
Mráz
and
J. M.
Schneider
,
Appl. Phys. Lett.
89
,
051502
(
2006
).
75.
S.
Mráz
and
J. M.
Schneider
,
J. Appl. Phys.
100
,
23503
(
2006
).
76.
J. M.
Andersson
,
E.
Wallin
,
E. P.
Münger
, and
U.
Helmersson
,
J. Appl. Phys.
100
,
033305
(
2006
).
77.
S.
Mahieu
,
W. P.
Leroy
,
K. V.
Van Aeken
, and
D.
Depla
,
J. Appl. Phys.
106
,
093302
(
2009
).
78.
T.
Welzel
,
S.
Naumov
, and
K.
Ellmer
,
J. Appl. Phys.
109
,
073302
(
2011
).
79.
T.
Welzel
and
K.
Ellmer
,
J. Vac. Sci. Technol., A
30
,
061306
(
2012
).
80.
S.
Seeger
,
K.
Harbauer
, and
K.
Ellmer
,
J. Appl. Phys.
105
,
053305
(
2009
).
81.
D.
Depla
and
R.
De Gryse
,
Surf. Coat. Technol.
183
,
190
(
2004
).
82.
J.
Van Bever
,
K.
Strijckmans
, and
D.
Depla
,
Appl. Surf. Sci.
613
,
155901
(
2023
).
83.
C.
Suzuki
,
K.
Sasaki
, and
K.
Kadota
,
J. Appl. Phys.
82
,
5321
(
1997
).
84.
C.
Suzuki
,
K.
Sasaki
, and
K.
Kadota
,
J. Vac. Sci. Technol., A
16
,
2222
(
1998
).
You do not currently have access to this content.