The degradation of fluoroelastomer, perfluoroelastomer (FFKM), and fluorosilicone materials were compared between three O2/Ar plasma conditions: full plasma (ions plus radicals), radical only, and ion only. These elastomer materials are used extensively in plasma processing equipment used to manufacture semiconductors, and understanding the plasma environments that enhance degradation will inform material choice and further material development. Langmuir probe measurements were made to quantify the electron temperature and plasma density; radical probe measurements were made to quantify the oxygen radical density. The results suggested that plasma radicals were required to drive significant mass loss rates, with ions speeding up the mass loss rate further in the full plasma case. Additionally, it was determined that plasma radicals were the main driver of surface changes of the elastomer, with similar surface roughening in plasma versus radical only conditions and less significant roughening in ion-only conditions. The O2/Ar plasma discharge had an electron temperature of 4.6 ± 0.1 eV and a plasma density of 2.9 ± 0.07 × 1016 m−3. It was observed that the fluorosilicone material had the lowest mass loss rate, the unfilled FFKM had the highest mass loss rate, and the silica-filled FFKM had the lowest mass loss rate among the FFKMs tested. The presence of oxygen radicals during exposure conditions significantly changed surface roughness.

1.
M.
Gulcur
and
K.
Beekmann
,
2016 International Symposium Semiconductor Manufacturing (ISSM)
(
IEEE
,
Tokyo
,
2016
), pp.
1
4
.
2.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 1st ed. (
Wiley
,
New York
,
2005
).
3.
T. S.
Reger
and
G. J.
Reichl
, in
2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)
, Saratoga Springs, NY, 24–26 August 2020 (
IEEE
,
New York
,
2020
), pp.
1
5
.
4.
T.
Goto
,
S.
Obara
,
T.
Shimizu
,
T.
Inagaki
,
Y.
Shirai
, and
S.
Sugawa
,
J. Vac. Sci. Technol. A
38
,
013002
(
2020
).
5.
A.
Verschuere
and
E.
Cole
,
Rubber Fibres Plastics Intl.
10, 122 (2015).
6.
B.
Améduri
,
B.
Boutevin
, and
G.
Kostov
,
Prog. Polym. Sci.
26
,
105
(
2001
).
7.
J.
Scheirs
,
Modern Fluoropolymers: High Performance Polymers for Diverse Applications
(
Wiley
,
Chichester
,
1997
).
8.
S.
Wang
and
J. M.
Legare
,
J. Fluor. Chem.
122
,
113
(
2003
).
9.
W.-Y.
Zhuo
,
Q.-L.
Wang
,
G.
Li
,
G.
Yang
,
H.
Zhang
,
W.
Xu
,
Y.-H.
Niu
, and
G.-X.
Li
,
Chin. J. Polym. Sci.
40
,
504
(
2022
).
11.
J. M.
Legare
,
S.
Wang
,
M.
Vigliotti
, and
S.
Sogo
, in
2008 IEEE/SEMI Advanced Semiconductor Manufacturing Conference
, Cambridge, MA, 5–7 May 2008 (
IEEE
,
New York
,
2008
), pp.
297
300
.
12.
W. B.
Alexander
and
J.
Foggiato
, in
2008 IEEE/SEMI Advanced Semiconductor Manufacturing Conference
, Cambridge, MA, 5–7 May 2008 (
IEEE,
New York
,
2008
), pp.
123
126
.
13.
G. R.
Tynan
et al,
J. Vac. Sci. Technol. A
15
,
2885
(
1997
).
14.
D.
Qerimi
,
I.
Shchelkanov
,
G.
Panici
,
A.
Jain
,
J.
Wagner
, and
D. N.
Ruzic
,
J. Vac. Sci. Technol. A
39
,
023003
(
2021
).
15.
D.
Qerimi
,
G.
Panici
,
A.
Jain
,
D.
Jacobson
, and
D. N.
Ruzic
,
J. Vac. Sci. Technol. A
39
,
023004
(
2021
).
16.
D.
Qerimi
, “
Radical probe system for in-situ measurements of radical densities of hydrogen, oxygen and nitrogen
,” M.S. thesis (
University of Illinois at Urbana-Champaign
,
2019
).
17.
A.
Vesel
and
M.
Mozetic
,
J. Phys. Conf. Ser.
162
,
012015
(
2009
).
18.
D. N.
Ruzic
,
Electric Probes for Low Temperature Plasmas
(
American Vacuum Society
,
New York
,
1994
).
19.
J. W.
Coburn
and
H. F.
Winters
,
J. Appl. Phys.
50
,
3189
(
1979
).
20.
A.
Laikhtman
,
I.
Gouzman
,
R.
Verker
,
E.
Grossman
, and
H. G.
Pippin
,
High Perform. Polym.
20
,
447
(
2008
).
You do not currently have access to this content.