There are few reported cases in which the spatial distribution of spectral emission coefficients of plasmas from tomographic optical emission spectroscopy measurements is analyzed based on a collisional-radiative model to diagnose the spatial distribution electron temperature of T e and density N e. This study aimed at in situ diagnosis of process plasma. The spectral radiance of 18 lines-of-sight was measured simultaneously in argon inductively coupled plasma. The spatial distribution of the excited level number density distribution was calculated from the spatial distribution of spectral emission coefficients obtained from spectral tomography calculations. The three-dimensional distribution of T e and N e was analyzed using a collisional-radiative model from the obtained spatial distribution of the excited levels number density. The effects of power and pressure on the dependence of the spatial distribution of T e and N e were discussed. Furthermore, data processing methods for spectral tomographic measurements with coarse wavelength resolution were also discussed.

1.
R.
Decoste
,
Rev. Sci. Instrum.
56
,
806
(
1985
).
2.
R. S.
Granetz
and
P.
Smeulders
,
Nucl. Fusion
28
,
457
(
1988
).
3.
T.
Hermann
,
S.
Löhle
,
S.
Fasoulas
, and
A.
Andrianatos
,
Appl. Opt.
55
,
10290
(
2016
).
4.
R.
Barni
,
P.
Alex
,
E.
Ghorbanpour
, and
C.
Riccardi
,
Eur. Phys. J. D
75
,
101
(
2021
).
5.
Y.
Miyoshi
,
Z. L.
Petrovic
, and
T.
Makabe
,
J. Phys. D: Appl. Phys.
35
,
454
(
2002
).
6.
Y.
Miyoshi
,
Z. L.
Petrovic
, and
T.
Makabe
,
IEEE Trans. Plasma Sci.
30
,
130
(
2002
).
7.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
John Wiley & Sons Inc.
,
Hoboken, NJ
,
2005
).
8.
X.
Wan
,
S. L.
Yu
,
G. Y.
Cai
,
Y. Q.
Gao
, and
J. L.
Yi
,
J. Opt. Soc. Am. A
21
,
1161
(
2004
).
9.
K.
Rathore
,
S.
Bhattacharjee
,
D. N.
Patel
, and
P.
Munshi
,
IEEE Trans. Plasma Sci.
45
,
2492
(
2017
).
10.
V.
Gonzalez-Fernandez
,
P.
David
,
R.
Baude
,
A.
Escarguel
, and
Y.
Camenen
,
Sci. Rep.
10
,
5389
(
2020
).
11.
T.
Fujimoto
,
Plasma Spectroscopy
(
Oxford University
,
Oxford
,
2004
).
12.
D.
Lee
,
J.
Kim
,
G.
Doh
,
C.
Shin
, and
W.
Choe
,
Plasma Sources Sci. Technol.
31
,
125004
(
2022
).
13.
S.
Park
,
W.
Choe
,
S. Y.
Moon
, and
S. J.
Yoo
,
Adv. Phys.: X
4
,
1526114
(
2019
).
14.
J.
Jang
,
S.
Park
,
J. Y.
Park
, and
W.
Choe
,
Plasma Sources Sci. Technol.
27
,
10LT01
(
2018
).
15.
Shinpan Hikari-no-keisoku-manyuaru, edited by Shoumei-gakkai [Nihon-riko-shuppankai (succeed by Japan Industrial Publishing), Tokyo, 2022] (in Japanese).
16.
“Methods of color measurement—Light-source color,” Japanese Industrial Standards JIS Z 8274:2015 (2015).
17.
Y.
Yamashita
,
K.
Doi
,
T.
Kiyota
,
K.
Asakawa
,
S.
Hosoya
,
W.
Kikuchi
,
A.
Nezu
, and
H.
Akatsuka
,
Rev. Sci. Instrum.
94
,
083503
(
2023
).
18.
M.
Anton
,
H.
Weisen
,
M. J.
Dutch
,
W. v. d.
Linden
,
F.
Buhlmann
,
R.
Chavan
,
B.
Marletaz
,
P.
Marmillod
, and
P.
Paris
,
Plasma Phys. Control. Fusion
38
,
1849
(
1996
).
19.
D. R.
Ferreira
, seehttps://github.com/diogoff/isttok-tomography for “isttok-tomography” [Online] (2019).
20.
P. J. d. P.
Carvalho
, “Tomography algorithms for real-time control in ISTTOK,” Ph.D. thesis (Instituto Superior Técnico, 2010).
21.
A.
Kramida
,
Yu.
Ralchenko
,
J.
Reader
, and NIST ASD Team, see https://physics.nist.gov/asd for “NIST Atomic Spectra Database” [Online]. National Institute of Standards and Technology, Gaithersburg, MD (2022).
22.
J.
Vlcek
,
J. Phys. D: Appl. Phys.
22
,
623
(
1989
).
23.
Y.
Yamashita
,
T.
Akiba
,
T.
Iwanaga
,
H.
Yamaoka
,
S.
Date
, and
H.
Akatsuka
,
Jpn. J. Appl. Phys.
60
,
046003
(
2021
).
24.
Y.
Yamashita
,
T.
Akiba
,
T.
Iwanaga
,
H.
Yamaoka
,
S.
Date
, and
H.
Akatsuka
,
IEEE Trans. Plasma Sci.
50
,
1875
(
2022
).
25.
S.-X.
Zhao
,
X.
Xu
,
X.-C.
Li
, and
Y.-N.
Wang
,
J. Appl. Phys.
105
,
083306
(
2009
).
You do not currently have access to this content.