Nickel (Ni) and its alloys are important multifunctional materials for the fabrication of integrated circuits, as either the absorber for the extreme ultraviolet lithography masks and/or interconnect metals at the nanometer scale. However, these applications require that Ni to be patterned controllably, selectively, and anisotropically—requirements that can only be met with a plasma based atomic layer etch (ALE) process. In this work, a plasma-thermal ALE approach is developed to pattern Ni, utilizing a nitrogen plasma to form NixN at the surface, formic acid (FA) vapor to selectively remove the NixN layer, and a low-energy Ar+ sputter process to remove carbon residue left by the FA prior to the subsequent nitridation step. This three step ALE process was shown effective to etch Ni with a rate of 1.3 ± 0.17 nm/cycle while maintaining surface smoothness.

1.
V.
Philipsen
et al,
Proc. SPIE
10143
,
1014310
(
2017
).
2.
F.
Scholze
,
C.
Laubis
,
K. V.
Luong
, and
V.
Philipsen
,
Proc. SPIE
10466
, 1044609 (
2017
)
3.
L.
Chen
,
D.
Ando
,
Y.
Sutou
,
D.
Gall
, and
J.
Koike
,
Appl. Phys. Lett.
113
, 183503 (
2018
).
4.
J. P.
Soulié
,
Z.
Tőkei
,
J.
Swerts
, and
C.
Adelmann
,
2020 IEEE International Interconnect Technology Conference (IITC)
, San Jose, CA, 5–8 October 2020 (IEEE, New York,
2020
), pp. 151–153.
5.
X.
Sang
,
E.
Chen
, and
J. P.
Chang
,
J. Vac. Sci. Technol. A
38
,
042603
(
2020
).
6.
J. A.
Murdzek
,
A.
Lii-Rosales
, and
S. M.
George
,
Chem. Mater.
33
,
9174
(
2021
).
7.
M.
Konh
,
C.
He
,
X.
Lin
,
X.
Guo
,
V.
Pallem
,
R. L.
Opila
,
A. V.
Teplyakov
,
Z.
Wang
, and
B.
Yuan
,
J. Vac. Sci. Technol. A
37
,
021004
(
2019
).
8.
N. K.-C.
Chen
,
N. D.
Altieri
,
T.
Kim
,
E.
Chen
,
T.
Lill
,
M.
Shen
, and
J. P.
Chang
,
J. Vac. Sci. Technol. A
35
,
05C305
(
2017
).
9.
J. K.-C.
Chen
,
N. D.
Altieri
,
T.
Kim
,
T.
Lill
,
M.
Shen
, and
J. P.
Chang
,
J. Vac. Sci. Technol. A
35
,
05C304
(
2017
).
10.
E.
Mohimi
,
X. I.
Chu
,
B. B.
Trinh
,
S.
Babar
,
G. S.
Girolami
, and
J. R.
Abelson
,
ECS J. Solid State Sci. Technol.
7
,
P491
(
2018
).
11.
A. I.
Abdulagatov
,
J. L.
Partridge
,
V.
Sharma
,
C. L.
Dezelah
, and
S. M.
George
, AVS 67, Virtual Symposium, Virtual Symposium (2021).
12.
R.
Sheil
,
J. M. P.
Martirez
,
X.
Sang
,
E. A.
Carter
, and
J. P.
Chang
,
J. Phys. Chem. C
125
,
1819
(
2021
).
13.
X.
Lin
,
M.
Chen
,
A.
Janotti
, and
R.
Opila
,
J. Vac. Sci. Technol. A
36
,
051401
(
2018
).
14.
M.
Konh
,
A.
Janotti
, and
A.
Teplyakov
,
J. Phys. Chem. C
125
,
7142
(
2021
).
15.
B. M.
Coffey
,
H. C.
Nallan
,
J. R.
Engstrom
, and
J. G.
Ekerdt
,
ACS Appl. Mater. Interfaces
12
,
50985
(
2020
).
16.
B. M.
Coffey
,
H. C.
Nallan
,
J. R.
Engstrom
,
C. H.
Lam
, and
J. G.
Ekerdt
,
Chem. Mater.
32
,
6035
(
2020
).
17.
B. M.
Coffey
,
H. C.
Nallan
, and
J. G.
Ekerdt
,
J. Vac. Sci. Technol. A
39
,
012601
(
2021
).
18.
K. J.
Kanarik
,
S.
Tan
, and
R. A.
Gottscho
,
J. Phys. Chem. Lett.
9
,
4814
(
2018
).
19.
A.
Lii-Rosales
,
A. S.
Cavanagh
,
A.
Fischer
,
T.
Lill
, and
S. M.
George
,
Chem. Mater.
33
,
7719
(
2021
).
20.
X.
Sang
and
J. P.
Chang
,
J. Vac. Sci. Technol. A
38
,
042604
(
2020
).
21.
C. C.
Hsu
,
J. W.
Coburn
, and
D. B.
Graves
,
J. Vac. Sci. Technol. A
24
,
1
(
2005
).
22.
J. E.
Sundgren
,
B. O.
Johansson
,
A.
Rockett
,
S. A.
Barnett
, and
J. E.
Greene
,
AIP Conf. Proc.
149
,
95
(
1986
).
23.
H.-S.
Seo
,
T.-Y.
Lee
,
I.
Petrov
,
J. E.
Greene
, and
D.
Gall
,
J. Appl. Phys.
97
, 083521 (
2005
).
24.
C.-S.
Shin
,
D.
Gall
,
Y.-W.
Kim
,
P.
Desjardins
,
I.
Petrov
,
J. E.
Greene
,
M.
Odén
, and
L.
Hultman
,
J. Appl. Phys.
90
,
2879
(
2001
).
25.
A. B.
Mei
,
R. B.
Wilson
,
D.
Li
,
D. G.
Cahill
,
A.
Rockett
,
J.
Birch
,
L.
Hultman
,
J. E.
Greene
, and
I.
Petrov
,
J. Appl. Phys.
115
,
214908
(
2014
).
26.
Y.
Xia
and
P.
Sautet
,
Chem. Mater.
33
,
6774
(
2021
).
27.
X.
Sang
,
Y.
Xia
,
P.
Sautet
, and
J. P.
Chang
,
J. Vac. Sci. Technol. A
38
,
043005
(
2020
).
28.
W.
Ni
,
A.
Krammer
,
C.-S.
Hsu
,
H. M.
Chen
,
A.
Schüler
, and
X.
Hu
,
Angew. Chem., Int. Ed.
58
,
7445
(
2019
).
29.
S. H.
Gage
,
B. G.
Trewyn
,
C. V.
Ciobanu
,
S.
Pylypenko
, and
R. M.
Richards
,
Catal. Sci. Technol.
6
,
4059
(
2016
).
30.
Z.
Li
,
R. G.
Gordon
,
V.
Pallem
,
H.
Li
, and
D. V.
Shenai
,
Chem. Mater.
22
,
3060
(
2010
).
31.
E.
Lindahl
,
M.
Ottosson
, and
J.-O.
Carlsson
,
ECS Trans.
25
,
365
(
2009
).
32.
A.
Leineweber
,
H.
Jacobs
, and
S.
Hull
,
Inorg. Chem.
40
,
5818
(
2001
).
33.
I. M.
Neklyudov
and
A. N.
Morozov
,
Phys. B
350
,
325
(
2004
).
34.
G. J. W. R.
Dorman
and
M.
Sikkens
,
Thin Solid Films
105
,
251
(
1983
).
35.
G. W.
Watt
and
D. D.
Davies
,
J. Am. Chem. Soc.
70
,
3753
(
1948
).
36.
H. A.
Wriedt
,
Bull. Alloy Phase Diagrams
6
,
558
(
1985
).
37.
N.
Zhang
et al,
Angew. Chem., Int. Ed.
58
,
15895
(
2019
).
38.
K.
Väyrynen
et al,
Phys. Status Solidi A
216
,
1900058
(
2019
).
39.
J. M.
Hill
,
D. G.
Royce
,
C. S.
Fadley
,
L. F.
Wagner
, and
F. J.
Grunthaner
,
Chem. Phys. Lett.
44
,
225
(
1976
).
40.
A. V.
Naumkin
,
A.
Kraut-Vass
,
S. W.
Gaarenstroom
, and
C. J.
Powell
, NIST Standard Reference Database Number 20. National Institute of Standards and Technology (2000).
41.
A.
Mameli
,
M. A.
Verheijen
,
A. J. M.
Mackus
,
W. M. M.
Kessels
, and
F.
Roozeboom
,
ACS Appl. Mater. Interfaces
10
,
38588
(
2018
).
You do not currently have access to this content.