This work presents the atomic layer etching (ALE) process for sputtered indium tin oxide (ITO) thin films using thermal surface modification with BCl 3 and modified surface removal by low ion energy Ar plasma. In this approach, an elevated temperature is required for high synergy ALE due to the low volatility of indium chlorides, and 150 °C is proved to be suitable. An etch per cycle (EPC) of 1.1 Å and ALE synergy of 82% was achieved. Both surface modification and modified surface removal steps exhibited self-limited EPC. The ALE process was developed in a conventional reactive ion etching tool and retains the thin film absolute uniformity on the wafer. ITO was photolithographically patterned on whole wafers using photoresist as an etch mask for the ALE, and clear smoothing of the unmasked areas is observed, which is a characteristic of an ideal ALE process. This confirms that the developed ALE process can be utilized to pattern ITO using conventional photolithography. The demonstrated ITO ALE can be used to fabricate, for example, thin channel or recessed channel transistors, with self-smoothened channels for reduced surface scattering.

1.
I.
Hamberg
,
C. G.
Granqvist
,
K.-F.
Berggren
,
B. E.
Sernelius
, and
L.
Engström
,
Phys. Rev. B
30
,
3240
(
1984
).
2.
J. Y.
Kwon
and
J. K.
Jeong
,
Semicond. Sci. Technol.
30
,
024002
(
2015
).
3.
4.
S.
Datta
,
S.
Dutta
,
B.
Grisafe
,
J.
Smith
,
S.
Srinivasa
, and
H.
Ye
,
IEEE Micro
39
,
8
(
2019
).
5.
S.
Li
,
M.
Tian
,
Q.
Gao
,
M.
Wang
,
T.
Li
,
Q.
Hu
,
X.
Li
, and
Y.
Wu
,
Nat. Mater.
18
,
1091
(
2019
).
6.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
7.
M.
Si
,
Z.
Lin
,
Z.
Chen
,
X.
Sun
,
H.
Wang
, and
P. D.
Ye
,
Nat. Electron.
5
,
164
(
2022
).
8.
M.
Si
,
J.
Andler
,
X.
Lyu
,
C.
Niu
,
S.
Datta
,
R.
Agrawal
, and
P. D.
Ye
,
ACS Nano
14
,
11542
(
2020
).
9.
S.
Franssila
,
Introduction to Microfabrication
, 2nd ed. (
Wiley
,
Chichester, UK
2010
).
10.
K.
Han
, et al., “First demonstration of oxide semiconductor nanowire transistors: A novel digital etch technique, IGZO channel, nanowire width down to 20 nm, and ion exceeding 1300 μA/ μm,” in 2021 Symposium on VLSI Technology, Kyoto, Japan, 13–19 June 2021 (
IEEE
,
Piscataway, NJ
2021), pp. 1–2.
11.
K.
Han
, et al. ,
IEEE Trans. Electron Devices
68
,
6610
(
2021
).
12.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
13.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
14.
K.
Min
,
S.
Kang
,
J.
Kim
,
Y.
Jhon
,
M.
Jhon
, and
G.
Yeom
,
Microelectron. Eng.
110
,
457
(
2013
).
15.
D.
Metzler
,
R. L.
Bruce
,
S.
Engelmann
,
E. A.
Joseph
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
32
,
01B101
(
2014
).
16.
W.
Lim
,
J.
Park
,
J.
Park
,
B.
Park
, and
G.
Yeom
,
J. Nanosci. Nanotechnol.
9
,
7379
(
2009
).
17.
S.
Park
,
W.
Lim
,
B.
Park
,
H.
Lee
,
J.
Bae
, and
G.
Yeom
,
Electrochem. Solid-State Lett.
11
,
H71
(
2008
).
18.
J. B.
Park
,
W. S.
Lim
,
S. D.
Park
,
B. J.
Park
, and
G. Y.
Yeom
,
J. Korean Phys. Soc.
54
,
976
(
2009
).
19.
D. R.
Zywotko
and
S. M.
George
,
Chem. Mater.
29
,
1183
(
2017
).
20.
A.
Mameli
,
M. A.
Verheijen
,
A. J.
Mackus
,
W. M.
Kessels
, and
F.
Roozeboom
,
ACS Appl. Mater. Interfaces
10
,
38588
(
2018
).
21.
Y.
Lee
,
N. R.
Johnson
, and
S. M.
George
,
Chem. Mater.
32
,
5937
(
2020
).
22.
C.
Kauppinen
,
S. A.
Khan
,
J.
Sundqvist
,
D. B.
Suyatin
,
S.
Suihkonen
,
E. I.
Kauppinen
, and
M.
Sopanen
,
J. Vac. Sci. Technol. A
35
,
060603
(
2017
).
23.
S. A.
Khan
,
D.
Suyatin
,
J.
Sundqvist
,
M.
Graczyk
,
M.
Junige
,
C.
Kauppinen
,
A.
Kvennefors
,
M.
Huffman
, and
I.
Maximov
,
ACS Appl. Nano Mater.
1
,
2476
(
2018
).
24.
V.
Kuzmenko
,
Y.
Lebedinskij
,
A.
Miakonkikh
, and
K.
Rudenko
,
Vacuum
207
,
111585
(
2023
).
25.
S.
Dallorto
,
A.
Goodyear
,
M.
Cooke
,
J. E.
Szornel
,
C.
Ward
,
C.
Kastl
,
A.
Schwartzberg
,
I. W.
Rangelow
, and
S.
Cabrini
,
Plasma Process. Polym.
16
,
1900051
(
2019
).
26.
A.
Kobelev
,
N.
Andrianov
,
Y.
Barsukov
, and
A.
Smirnov
, “Boron trichloride dry etching,” in Encyclopedia of Plasma Technology-Two Volume Set (CRC, Boca Raton, 2016), pp. 193–202.
27.
D.
Nečas
and
P.
Klapetek
,
Cent. Eur. J. Phys.
10
,
181
(
2012
).
28.
See supplementary material online for the saturation curve of Reaction B at room temperature and for the synergy test at room temperature.
29.
K. J.
Kanarik
, et al. ,
J. Vac. Sci. Technol. A
35
,
05C302
(
2017
).
30.
W.
Haynes
,
D.
Lide
, and
T.
Bruno
,
CRC Handbook of Chemistry and Physics
(
CRC
,
Boca Raton, FL
,
2017
), Vol. 97.
31.
F.
Karouta
,
J. Phys. D: Appl. Phys.
47
,
233501
(
2014
).
32.
C.
Mannequin
,
C.
Vallée
,
K.
Akimoto
,
T.
Chevolleau
,
C.
Durand
,
C.
Dussarrat
,
T.
Teramoto
,
E.
Gheeraert
, and
H.
Mariette
,
J. Vac. Sci. Technol. A
38
,
032602
(
2020
).
33.
J.
Michaels
,
N.
Delegan
,
Y.
Tsaturyan
,
J.
Renzas
,
D.
Awschalom
,
J.
Eden
, and
F.
Heremans
,
J. Vac. Sci. Technol. A
41
,
032607
(
2023
).
34.
K. J.
Kanarik
,
S.
Tan
, and
R. A.
Gottscho
,
J. Phys. Chem. Lett.
9
,
4814
(
2018
).
35.
J.
Hennessy
,
C. S.
Moore
,
K.
Balasubramanian
,
A. D.
Jewell
,
K.
France
, and
S.
Nikzad
,
J. Vac. Sci. Technol. A
35
,
041512
(
2017
).

Supplementary Material

You do not currently have access to this content.