An approach is demonstrated for performing multiple, simultaneous depositions in a high-throughput, multiplexing atomic layer deposition/molecular layer deposition (ALD/MLD)-style reactor. Such a system allows independent processes to run in parallel by connecting more than one reaction chamber to shared resources, such as a pump and reactant manifold. Appropriate control systems for the shared resources maintain independence in deposition parameters and resulting films while allowing for depositions in a vacuum or with a carrier gas. An example system is built and shown to exhibit process uniformity while avoiding cross-contamination, as verified using ellipsometry and x-ray photoelectron spectroscopy. The reactor design can screen new ALD/MLD deposition processes more quickly than a typical one-chamber system without the capital cost of an equivalent number of independent systems, accelerating the pace of innovations in nanotechnology.

1.
C. Z.
Leng
and
M. D.
Losego
,
Mater. Horiz.
4
,
747
(
2017
).
2.
M.
Leskelä
and
M.
Ritala
,
Angew. Chem. Int. Ed.
42
,
5548
(
2003
).
4.
J. M.
Rafí
,
M.
Zabala
,
O.
Beldarrain
, and
F.
Campabadal
,
J. Electrochem. Soc.
158
,
G108
(
2011
).
5.
K. H.
Park
,
G. D.
Han
,
B. J.
Kim
,
E. H.
Kang
,
J. S.
Park
,
J. H.
Shim
, and
H. D.
Park
,
Ceram. Int.
45
,
18823
(
2019
).
6.
B. J.
Oneill
et al,
ACS Catal.
5
,
1804
(
2015
).
7.
C.
Wiemer
,
L.
Lamagna
, and
M.
Fanciulli
,
Semicond. Sci. Technol.
27
,
074013
(
2012
).
8.
J.
Jeong
,
F.
Laiwalla
,
J.
Lee
,
R.
Ritasalo
,
M.
Pudas
,
L.
Larson
,
V.
Leung
, and
A.
Nurmikko
,
Adv. Funct. Mater.
29
,
1806440
(
2019
).
9.
M. J.
Biercuk
,
D. J.
Monsma
,
C. M.
Marcus
,
J. S.
Backer
, and
R. G.
Gordon
,
Appl. Phys. Lett.
83
,
2405
(
2003
).
10.
J.
Plutnar
and
M.
Pumera
,
Small
17
,
2102088
(
2021
).
11.
C.
Marichy
,
M.
Bechelany
, and
N.
Pinna
,
Adv. Mater.
24
,
1017
(
2012
).
12.
L.
Wen
,
M.
Zhou
,
C.
Wang
,
Y.
Mi
, and
Y.
Lei
,
Adv. Energy Mater.
6
,
1600468
(
2016
).
13.
A. S.
Asundi
,
J. A.
Raiford
, and
S. F.
Bent
,
ACS Energy Lett.
4
,
908
(
2019
).
14.
C.
Bae
,
H.
Shin
, and
K.
Nielsch
,
MRS Bull.
36
,
887
(
2011
).
15.
C. M.
Wang
,
D. L.
Kong
,
Q.
Chen
, and
J. M.
Xue
,
Front. Mater. Sci.
7
,
335
(
2013
).
16.
M.
Liu
,
X.
Li
,
S. K.
Karuturi
,
A. I. Y.
Tok
, and
H. J.
Fan
,
Nanoscale
4
,
1522
(
2012
).
17.
R.
Li
,
N.
Li
,
J.
Hou
,
Y.
Yu
,
L.
Liang
,
B.
Yan
, and
G.
Chen
,
J. Hazard. Mater.
402
,
123513
(
2021
).
18.
M.
Bechelany
,
S.
Balme
, and
P.
Miele
,
Pure Appl. Chem.
87
,
751
(
2015
).
19.
S. J.
Noh
,
S. K.
Lee
,
E. H.
Kim
, and
Y. J.
Kong
,
Curr. Appl. Phys.
6
,
171
(
2006
).
20.
H.
Kim
,
H. B. R.
Lee
, and
W. J.
Maeng
,
Thin Solid Films
517
,
2563
(
2009
).
21.
T.
Yoshimura
,
S.
Tatsuura
, and
W.
Sotoyama
,
Appl. Phys. Lett.
59
,
482
(
1991
).
22.
B. H.
Lee
,
V. R.
Anderson
, and
S. M.
George
,
ECS Trans.
41
,
131
(
2011
).
23.
B. H.
Lee
,
B.
Yoon
,
A. I.
Abdulagatov
,
R. A.
Hall
, and
S. M.
George
,
Adv. Funct. Mater.
23
,
532
(
2013
).
24.
E.
Ahvenniemi
and
M.
Karppinen
,
Chem. Commun.
52
,
1139
(
2016
).
25.
K. B.
Lausund
,
M. S.
Olsen
,
P. A.
Hansen
,
H.
Valen
, and
O.
Nilsen
,
J. Mater. Chem. A
8
,
2539
(
2020
).
26.
L. D.
Salmi
,
M. J.
Heikkilä
,
E.
Puukilainen
,
T.
Sajavaara
,
D.
Grosso
, and
M.
Ritala
,
Microporous Mesoporous Mater.
182
,
147
(
2013
).
27.
K.
Gregorczyk
and
M.
Knez
,
Prog. Mater. Sci.
75
,
1
(
2016
).
28.
S.
Lee
,
M.
Kim
,
G.
Baek
,
H.
Kim
,
T. T. N.
Van
,
D.
Gwak
,
K.
Heo
,
B.
Shong
, and
J.-S.
Park
,
ACS Appl. Mater. Interfaces
12
,
43212
(
2020
).
29.
H.
Zhou
and
S. F.
Bent
,
ACS Appl. Mater. Interfaces
3
,
505
(
2011
).
30.
K.
Ashurbekova
,
K.
Ashurbekova
,
I.
Saric
,
M.
Gobbi
,
E.
Modin
,
A.
Chuvilin
,
M.
Petravic
,
I.
Abdulagatov
, and
M.
Knez
,
Chem. Mater.
33
,
1022
(
2021
).
31.
Y.
Zhao
et al,
Chem. Soc. Rev.
50
,
3889
(
2021
).
32.
Y.
Zhao
and
X.
Sun
,
ACS Energy Lett.
3
,
899
(
2018
).
33.
P.
Ingale
,
C.
Guan
,
R.
Kraehnert
,
R.
Naumann d’Alnoncourt
,
A.
Thomas
, and
F.
Rosowski
,
Catal. Today
362
,
47
(
2021
).
35.
L.
Yan
,
X.
Wang
,
S.
Zhao
,
Y.
Li
,
Z.
Gao
,
B.
Zhang
,
M.
Cao
, and
Y.
Qin
,
ACS Appl. Mater. Interfaces
9
,
11116
(
2017
).
36.
D.
La Zara
,
M. R.
Bailey
,
P. L.
Hagedoorn
,
D.
Benz
,
M. J.
Quayle
,
S.
Folestad
, and
J. R.
Van Ommen
,
ACS Appl. Nano Mater.
3
,
6737
(
2020
).
37.
L.
Qin
,
N.
Yan
,
H.
Hao
,
T.
An
,
F.
Zhao
, and
H.
Feng
,
Appl. Surf. Sci.
436
,
548
(
2018
).
38.
A. L.
Johnson
and
J. D.
Parish
, in
Organometallic Chemistry
, edited by
N.
Patmore
and
P.
Elliot
(
Royal Society of Chemistry
,
London
,
United Kingdom
,
2018
), pp.
1
53
.
39.
H.
Jain
and
P.
Poodt
,
Dalton Trans.
50
,
5807
(
2021
).
40.
P. O.
Oviroh
,
R.
Akbarzadeh
,
D.
Pan
,
R.
Alfred
,
M.
Coetzee
, and
T.-C.
Jen
,
Sci. Technol. Adv. Mater.
20
,
465
(
2019
).
41.
Y.
Lei
,
S.
Gandikota
,
S.
Ganguli
,
B.
Zheng
,
R.
Jakkaraju
,
M.
Salinas
, and
B.
Schmiege
, U.S. Patent 9 514 933 B2 (6 December 2016).
42.
K.
Knapas
and
M.
Ritala
,
Crit. Rev. Solid State Mater. Sci.
38
,
167
(
2013
).
43.
Y.
Du
and
S. M.
George
,
J. Phys. Chem. C
111
,
8509
(
2007
).
44.
R. A.
Nye
,
S.
Wang
,
S.
Uhlenbrock
,
J. A.
Smythe
, and
G. N.
Parsons
,
Dalton Trans.
51
,
1838
(
2022
).
45.
Q.
Peng
,
B.
Gong
,
R. M.
VanGundy
, and
G. N.
Parsons
,
Chem. Mater.
21
,
820
(
2009
).
46.
P.
Poodt
,
A.
Lankhorst
,
F.
Roozeboom
,
K.
Spee
,
D.
Maas
, and
A.
Vermeer
,
Adv. Mater.
22
,
3564
(
2010
).
47.
B.
Hoex
,
J.
Schmidt
,
P.
Pohl
,
M. C. M.
Van De Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
104
, 044903 (
2008
).
48.
H. H.
Sønsteby
,
A.
Yanguas-Gil
, and
J. W.
Elam
,
J. Vac. Sci. Technol. A
38
,
020804
(
2020
).
49.
V.
Vandalon
and
W. M. M.
Erwin Kessels
,
Langmuir
35
,
10374
(
2019
).
50.
H.
Roh
,
H.-L.
Kim
,
K.
Khumaini
,
H.
Son
,
D.
Shin
, and
W.-J.
Lee
,
Appl. Surf. Sci.
571
,
151231
(
2022
).
51.
M. D.
Groner
,
F. H.
Fabreguette
,
J. W.
Elam
, and
S. M.
George
,
Chem. Mater.
16
,
639
(
2004
).
52.
B.
Yoon
,
J. L.
O’Patchen
,
D.
Seghete
,
A. S.
Cavanagh
, and
S. M.
George
,
Chem. Vap. Deposition
15
,
112
(
2009
).
53.
K. S.
Han
and
M. M.
Sung
,
J. Nanosci. Nanotechnol.
14
,
6137
(
2014
).
54.
D.
Choudhury
,
G.
Rajaraman
, and
S. K.
Sarkar
,
J. Vac. Sci. Technol. A
36
,
01A108
(
2018
).
55.
X.
Meng
,
J. Mater. Chem. A
5
,
18326
(
2017
).
56.
See the supplementary material online for further detail on the reactor design, including schematics and parts, and additional results on the functionality of the multichamber system.

Supplementary Material

You do not currently have access to this content.