Metalorganic chemical vapor deposition (MOCVD) is a promising technique for wafer-scale synthesis of MoS2 monolayers for 2D field-effect transistors (2D-FETs) and related devices. Epitaxial growth of MoS2 on sapphire provides films that are crystallographically well-oriented but typically contain low-angle grain boundaries (e.g., mirror twins), voids, and other defects depending on growth conditions and substrate characteristics. In this study, we investigate microstructure, optical properties, and field-effect characteristics of wafer-scale MoS2 monolayers grown by MOCVD on c-plane sapphire over a narrow window of growth temperatures (900–1000 °C). The density of low-angle grain boundaries in the MoS2 monolayer was found to decrease dramatically from 50% areal coverage for films grown at 900 °C to 5% at 1000 °C. This decrease in low-angle grain boundary density is correlated with an increase in the room-temperature photoluminescence intensity of A excitons and a decrease in the full-width-half maximum (FWHM) of the Raman A1g peak, which are typically indicative of a general reduction in defects in MoS2. However, the best transport properties (e.g., mean field-effect mobility mFE = 17.3 cm2/V s) were obtained in MoS2 monolayers grown at an intermediate temperature of 950 °C. It was found that as the growth temperature increased, small regions bound by high-angle boundaries begin to appear within the monolayer and increase in areal coverage, from ∼2% at 900 °C to ∼5% at 950 °C to ∼10% at 1000 °C. The growth temperature of 950 °C, therefore, provides an intermediate condition where the combined effects of low-angle and high-angle boundaries are minimized. The results of this study provide guidance on MOCVD growth and characterization that can be used to further optimize the performance of MoS2 2D-FETs.

1.
S. B.
Samavedam
et al,
2020 IEEE International Electron Devices Meeting (IEDM)
,
San Francisco, CA
, 12–18 December 2020 (IEEE, New York,
2020
), pp.
1.1.1
1.1.10
.
2.
W.
Cao
,
J.
Kang
,
D.
Sarkar
,
W.
Liu
, and
K.
Banerjee
,
IEEE Trans. Electron. Dev.
62
,
3459
(
2015
).
3.
K.
Kang
,
S.
Xie
,
L.
Huang
,
Y.
Han
,
P. Y.
Huang
,
K. F.
Mak
,
C. J.
Kim
,
D.
Muller
, and
J.
Park
,
Nature
520
,
656
(
2015
).
6.
D.
Chiappe
et al,
Nanotechnology
29
,
425602
(
2018
).
7.
11.
12.
A. M.
Van Der Zande
et al,
Nat. Mater.
12
,
554
(
2013
).
13.
D.
Reifsnyder Hickey
et al,
Nano Lett.
21
,
6487
(
2021
).
14.
15.
Y.
Xuan
et al,
J. Cryst. Growth
527
,
125247
(
2019
).
16.
V.
Spampinato
,
Y.
Shi
,
J.
Serron
,
A.
Minj
,
B.
Groven
,
T.
Hantschel
,
P.
van der Heide
, and
A.
Franquet
,
Adv. Mater. Interfaces
10
,
2202016
(
2023
).
17.
M.
Chubarov
,
T. H.
Choudhury
,
X.
Zhang
, and
J. M.
Redwing
,
Nanotechnology
29
,
055706
(
2018
).
18.
C.
Lee
,
H.
Yan
,
L. E.
Brus
,
T. F.
Heinz
,
J.
Hone
, and
S.
Ryu
,
ACS Nano
4
,
2695
(
2010
).
19.
S.
Mignuzzi
,
A. J.
Pollard
,
N.
Bonini
,
B.
Brennan
,
I. S.
Gilmore
,
M. A.
Pimenta
,
D.
Richards
, and
D.
Roy
,
Phys. Rev. B
91
,
195411
(
2015
).
20.
A.
Castellanos-Gomez
,
R.
Roldán
,
E.
Cappelluti
,
M.
Buscema
,
F.
Guinea
,
H. S. J.
Van Der Zant
, and
G. A.
Steele
,
Nano Lett.
13
,
5361
(
2013
).
21.
S.
Bhattacharyya
,
T.
Pandey
, and
A. K.
Singh
,
Nanotechnology
25
,
465701
(
2014
).
22.
K. M.
McCreary
,
A. T.
Hanbicki
,
S. V.
Sivaram
, and
B. T.
Jonker
,
APL Mater.
6
,
111106
(
2018
).
23.
H. J.
Conley
,
B.
Wang
,
J. I.
Ziegler
,
R. F.
Haglund
,
S. T.
Pantelides
, and
K. I.
Bolotin
,
Nano Lett.
13
,
3626
(
2013
).
24.
S. H.
El-Mahalawy
,
B. L.
Evans
, and
J. J.
Thomson
,
J. Appl. Cryst.
9
,
403
(
1976
).
25.
W. M.
Yim
and
R. J.
Paff
,
J. Appl. Phys.
45
,
1456
(
1974
).
26.
S.
Mouri
,
Y.
Miyauchi
, and
K.
Matsuda
,
Nano Lett.
13
,
5944
(
2013
).
28.
See supplementary material online for details of the MoS2 monolayers’ synthesis by MOCVD and characterization methods including AFM and FESEM imaging, in-plane XRD, Raman spectrum analysis, TEM imaging, 4D-STEM characterization, PL spectrum and PL mapping result, MoS2 monolayer transfer process and FET device fabrication and electrical characterization method.
29.
C.
Chen
, N. Trainor, and J. M. Redwing (2023). “Effect of growth temperature on the microstructure and properties of epitaxial MoS2 monolayers grown by metalorganic chemical vapor deposition,”
Scholarsphere
, Dataset http://doi.org/10.26207/4ez5-7450

Supplementary Material

You do not currently have access to this content.