The aim of this review paper is to summarize a decade of research focused on enhancing metalorganic vapor-phase epitaxy (MOVPE) growth rates of GaAs, driven by the imperative for most cost-effective and energy-efficient III–V compounds’ production. While MOVPE is renowned for producing high-quality devices, it has been constrained by production cost. For example, MOVPE was traditionally thought to have moderate growth rates that limit the throughput of the cost-intensive reactors. Recent research endeavors, however, have demonstrated ultrafast growth rates, exceeding 280 μm/h, with a remarkable group III precursor utilization efficiency of over 50%. It is worth noting that even with increased growth rates, the surface quality remains unaffected in terms of roughness and morphology. Nonetheless, optoelectronic properties, such as minority carrier lifetime, deteriorate for both p- and n-doped materials under constant growth conditions. This is attributed to an increase in the defect density of arsenic antisites, particularly EL2 and HM1 defects, as revealed by deep-level transient spectroscopy investigations. Some of these losses can be mitigated by optimizing growth conditions, such as elevating the temperature and reducing the V/III ratio. The latter not only restores some of the material quality but also increases the growth rate and reduces precursor consumption. Still, fully recovering the original reference lifetimes remains a challenge. Solar cell results indicate that structures with predominantly n-type absorbers are less affected by reduced minority carrier lifetimes. A remarkable 24.5% efficiency was achieved in a GaAs single-junction solar cell grown at 120 μm/h, representing less than 1 min of growth time for the absorber layers.

1.
H. M.
Manasevit
,
Appl. Phys. Lett.
12
,
156
(
1968
).
2.
M. A.
Green
,
E. D.
Dunlop
,
M.
Yoshita
,
N.
Kopidakis
,
K.
Bothe
,
G.
Siefer
, and
X.
Hao
,
Prog. Photovolt. Res. Appl.
31
,
651
(
2023
).
3.
J. F.
Geisz
,
R. M.
France
,
K. L.
Schulte
,
M. A.
Steiner
,
A. G.
Norman
,
H. L.
Guthrey
,
M. R.
Young
,
T.
Song
, and
T.
Moriarty
,
Nat. Energy
5
,
326
(
2020
).
4.
F.
Dimroth
et al,
IEEE J. Photovolt.
6
,
343
(
2016
).
5.
B. M.
Kayes
,
H.
Nie
,
R.
Twist
,
S. G.
Spruytte
,
F.
Reinhardt
,
I. G.
Kizilyalli
, and
G. S.
Higashi
, “
27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination
,” in
37th IEEE Photovoltaic Specialists Conference (PVSC). Conference Record
, Seattle, WA, USA; 19th–24th June, 2011 (
IEEE
,
Piscataway
,
NJ
,
2011
), p.
4
.
6.
H.
Helmers
,
E.
Lopez
,
O.
Höhn
,
D.
Lackner
,
J.
Schön
,
M.
Schauerte
,
M.
Schachtner
,
F.
Dimroth
, and
A. W.
Bett
,
Phys. Status Solidi RRL
15
,
2170026
(
2021
).
7.
Y.
Imamura
,
L.
Jastrzebski
, and
H. C.
Gatos
,
J. Electrochem. Soc.
125
,
1560
(
1978
).
8.
M.
Deschler
,
K.
Grüter
,
A.
Schlegel
,
R.
Beccard
,
H.
Jürgensen
, and
P.
Balk
,
J. Phys. Colloq.
49
,
C4-689
(
1988
).
9.
E. L.
McClure
,
K. L.
Schulte
,
J.
Simon
,
W.
Metaferia
, and
A. J.
Ptak
,
Appl. Phys. Lett.
116
,
182102
(
2020
).
10.
G. B.
Stringfellow
,
Organometallic Vapor-Phase Epitaxy. Theory and Practice, 2. Aufl.
(
Elsevier
,
London
,
1998
).
11.
B.
Lee
,
D.
Fan
, and
S. R.
Forrest
,
Sustain. Energy Fuels
4
,
2035
(
2020
).
12.
A.
Freundlich
,
F.
Newman
,
M.
Vilela
,
C.
Monier
,
L.
Aguilar
, and
S.
Street
,
J. Cryst. Growth
209
,
481
(
2000
).
13.
K. L.
Schulte
,
J.
Simon
,
A.
Roy
,
R. C.
Reedy
,
D. L.
Young
,
T. F.
Kuech
, and
A. J.
Ptak
,
J. Cryst. Growth
434
,
138
(
2016
).
14.
W.
Metaferia
,
K. L.
Schulte
,
J.
Simon
,
S.
Johnston
, and
A. J.
Ptak
,
Nat. Commun.
10
,
3361
(
2019
).
15.
R.
Oshima
,
A.
Ogura
,
Y.
Shoji
,
K.
Makita
,
A.
Ubukata
,
S.
Koseki
,
M.
Imaizumi
, and
T.
Sugaya
,
Crystals
13
,
370
(
2023
).
16.
Y.
Shoji
,
R.
Oshima
,
K.
Makita
,
A.
Ubukata
, and
T.
Sugaya
,
Appl. Phys. Express
12
,
052004
(
2019
).
17.
N.
Jain
,
J.
Simon
,
K. L.
Schulte
,
D. J.
Friedman
,
D. R.
Diercks
,
C. E.
Packard
,
D. L.
Young
, and
A. J.
Ptak
,
IEEE J. Photovolt.
8
,
1577
(
2018
).
18.
Y.
Shoji
,
R.
Oshima
,
K.
Makita
,
A.
Ubukata
, and
T.
Sugaya
,
Sol. RRL
6
,
2100948
(
2022
).
19.
J.
Simon
,
D. M.
Roberts
,
J.
Boyer
,
K. L.
Schulte
,
A.
Braun
,
A. N.
Perna
, and
A. J.
Ptak
, “
Recent HVPE grown solar cells at NREL
,” in
48th IEEE Photovoltaic Specialists Conference (PVSC)
, Fort Lauderdale, FL, USA; 20th–25th June 2021 (
IEEE
,
Piscataway, NJ
,
2021
), p.
1545
.
20.
M.
Yamaguchi
,
F.
Dimroth
,
J. F.
Geisz
, and
N. J.
Ekins-Daukes
,
J. Appl. Phys.
129
,
240901
(
2021
).
21.
J.
Adams
,
V.
Elarde
,
A.
Hains
,
C.
Stender
,
F.
Tuminello
,
C.
Youtsey
,
A.
Wibowo
, and
M.
Osowski
,
IEEE J. Photovolt.
3
,
899
(
2013
).
22.
J.
Wulf
,
E.
Oliva
,
G.
Mikolasch
,
J.
Bartsch
,
F.
Dimroth
, and
H.
Helmers
, “
Thin film GaAs solar cell enabled by direct rear side plating and patterned epitaxial lift-off
,” in
48th IEEE Photovoltaic Specialists Conference (PVSC). Conference Record
, Fort Lauderdale, FL, USA; 20th–25th June 2021 (
IEEE
,
Piscataway, NJ
,
2020
), p.
1931
.
23.
E.
Winter
,
W.
Schreiber
,
P.
Schygulla
,
P. L.
Souza
,
S.
Janz
,
D.
Lackner
, and
J.
Ohlmann
,
J. Cryst. Growth
602
,
126980
(
2023
).
24.
25.
P.
Caño
,
M.
Hinojosa
,
I.
García
,
R.
Beanland
,
D.
Fuertes Marrón
,
C. M.
Ruiz
,
A.
Johnson
, and
I.
Rey-Stolle
,
Sol. Energy
230
,
925
(
2021
).
26.
Horowitz
,
A. W.
Kelsey
,
Timothy
Remo
,
Brittany
Smith
, and
Aaron
Ptak
. 2018. Techno-Economic Analysis and Cost Reduction Roadmap for III-V Solar Cells. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-72103. https://www.nrel.gov/docs/fy19osti/72103.pdf.
28.
M.
Feifel
,
D.
Lackner
,
J.
Schön
,
J.
Ohlmann
,
J.
Benick
,
G.
Siefer
,
F.
Predan
,
M.
Hermle
, and
F.
Dimroth
,
Sol. RRL
5
,
2000763
(
2021
).
29.
K. J.
Schmieder
et al, “
Analysis of GaAs solar cells at high MOCVD growth rates
,” in
40th IEEE Photovoltaic Specialists Conference (PVSC)
, Denver, CO, USA; 8th–13th June 2014 (
IEEE
,
Piscataway
,
NY
,
2014
), p.
2130
.
30.
R.
Lang
,
F.
Habib
,
M.
Dauelsberg
,
F.
Dimroth
, and
D.
Lackner
,
J. Cryst. Growth
537
,
125601
(
2020
).
31.
H.
Sodabanlu
,
A.
Ubukata
,
K.
Watanabe
,
S.
Koseki
,
K.
Matsumoto
,
T.
Sugaya
,
Y.
Nakano
, and
M.
Sugiyama
,
J. Phys. D: Appl. Phys.
52
,
105501
(
2019
).
32.
H.
Sodabanlu
,
A.
Ubukata
,
K.
Watanabe
,
T.
Sugaya
,
Y.
Nakano
, and
M.
Sugiyama
,
IEEE J. Photovolt.
10
,
480
(
2020
).
33.
T.
Anders
,
A.
Frey
,
J.
Grübler
,
M.
Heuken
,
J.
Koch
,
D.
Lackner
, and
K.
Möller
, Kostenreduktion und erhöhte Ressourceneffizienz durch neue Versorgungssysteme für Metallorganische Ausgangsstoffe in der Epitaxie von III-V Hochleistungssolarzellen“ (KoReMo): öffentlicher Schlussbericht : Laufzeit des Vorhabens 01.03.2017 bis 28.02.2021 (2021).
34.
D.
Lackner
,
T.
Urban
,
R.
Lang
,
C.
Pellegrino
,
J.
Ohlmann
, and
V.
Dudek
,
J. Cryst. Growth
613
,
127201
(
2023
).
36.
H.
Sodabanlu
,
A.
Ubukata
,
K.
Watanabe
,
T.
Sugaya
,
Y.
Nakano
, and
M.
Sugiyama
,
IEEE J. Photovolt.
8
,
1
(
2018
).
37.
C. A.
Wang
,
S.
Patnaik
,
J. W.
Caunt
, and
R. A.
Brown
,
J. Cryst. Growth
93
,
228
(
1988
).
38.
S.
Mazumder
and
S. A.
Lowry
,
J. Cryst. Growth
224
,
165
(
2001
).
39.
R.
Lang
,
J.
Schon
,
F.
Dimroth
, and
D.
Lackner
,
IEEE Journal of Photovoltaics
, vol.
8
, no. 6, pp.
1596
1600
(
2018
).
40.
K.
Schmieder
,
C.
Haughn
,
Z.
Pulwin
,
D.
Dyer
,
J.
Mutitu
,
M.
Doty
,
C.
Ebert
, and
A.
Barnett
, “
Analysis of high growth rate MOCVD structures by solar cell device measurements
,” in
37th IEEE Photovoltaic Specialists Conference (PVSC). Conference Record
, Seattle, WA, USA; 19th–24th June 2011 (
IEEE
,
Piscataway, NJ
,
2011
), p.
542
.
41.
C. R.
Haughn
,
K. J.
Schmieder
,
J. M.
Zide
,
A.
Barnett
,
C.
Ebert
,
R.
Opila
, and
M. F.
Doty
,
Appl. Phys. Lett.
102
,
182108
(
2013
).
42.
C.
Zhang
,
Y.
Kim
,
C.
Ebert
,
N. N.
Faleev
, and
C. B.
Honsberg
, “
Influence of high growth rate on GaAs-based solar cells grown by metalorganic chemical vapor deposition
,” in
42nd IEEE Photovoltaic Specialist Conference (PVSC). Conference Record
, New Orleans, LA, USA; 14th–19th June 2015 (
IEEE
,
Piscataway, NJ
,
2015
), p.
1
.
43.
K. J.
Schmieder
,
E. A.
Armour
,
M. P.
Lumb
,
M. K.
Yakes
,
Z.
Pulwin
,
J.
Frantz
, and
R. J.
Walters
,
IEEE J. Photovolt.
7
,
340
(
2017
).
44.
M. A.
Stevens
,
M. P.
Lumb
,
E. A.
Armour
,
M. F.
Bennett
,
Z.
Pulwin
,
J. A.
Frantz
,
J.
Myers
,
R. J.
Walters
, and
K. J.
Schmieder
, “
High growth rate rear-junction GaAs solar cell with a distributed Bragg reflector
,” in
48th IEEE Photovoltaic Specialists Conference (PVSC)
, Fort Lauderdale, FL, USA; 20th–25th June 2021 (
IEEE
,
Piscataway, NJ
,
2021
), p.
342
.
45.
H.
Sodabanlu
,
A.
Ubukata
,
K.
Watanabe
,
T.
Sugaya
,
Y.
Nakano
, and
M.
Sugiyama
, “
Rear homo and hetero junctions III-V n-on-p solar cells grown with high speed MOVPE
,” in
2020 47th IEEE Photovoltaic Specialists Conference (PVSC)
, Calgary, AB, Canada; 15th June–21st August 2020 (
IEEE
,
Piscataway
,
NJ
,
2020
), p.
152
.
46.
T.
Korst
, AIXTRON SE, private communication (18th January 2024).
47.
R.
Lang
, “
Defekte in III-V-Halbleitermaterialien des GaInAsP-Systems
,”
dissertation
(
Universität Konstanz
,
2021
).
48.
A.
Ubukata
et al,
J. Cryst. Growth
509
,
87
(
2019
).
49.
G. B.
Stringfellow
,
J. Cryst. Growth
75
,
91
(
1986
).
51.
S. J.
Bass
and
P. E.
Oliver
,
Inst. Phys. Conf. Ser.
33
,
1
(
1977
).
52.
M.
Hinojosa
,
I.
Lombardero
,
C.
Algora
, and
I.
García
,
Sol. Energy Mater. Sol. Cells
248
,
112000
(
2022
).
53.
R. K.
Ahrenkiel
,
Solid-State Electron.
35
,
239
(
1992
).
54.
H. A.
Zarem
,
P. C.
Sercel
,
J. A.
Lebens
,
L. E.
Eng
,
A.
Yariv
, and
K. J.
Vahala
,
Appl. Phys. Lett.
55
,
1647
(
1989
).
55.
A.
Das
,
V. A.
Singh
, and
D. V.
Lang
,
Semicond. Sci. Technol.
3
,
1177
(
1988
).
56.
K. J.
Schmieder
et al, “
Relationship between EL2 density, SRH lifetime, and photovoltaic device performance in GaAs at high MOCVD growth rates
,” in
42nd IEEE Photovoltaic Specialist Conference (PVSC). Conference Record
, New Orleans, LA, USA; 14th–19th June 2015 (
IEEE
,
Piscataway, NJ
,
2015
), p.
1
.
57.
Solar cells
,
Materials, Manufacture and Operation
, 2nd ed. (
Elsevier
,
Waltham
,
MA
,
2013
).
58.
H.
Sodabanlu
,
A.
Ubukata
,
K.
Watanabe
,
T.
Sugaya
,
Y.
Nakano
, and
M.
Sugiyama
, “
Impacts of V/III ratio on the quality and performance of GaAs p-n solar cells by ultrafast MOVPE
,” in
2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)
, Waikoloa, HI, USA; 10th–15th June 2018 (
IEEE
,
Piscataway, NJ
,
2018
).
59.
A.
Bencherifa
,
G.
Brémond
,
A.
Nouailhat
,
G.
Guillot
,
A.
Guivarc’h
, and
A.
Regreny
,
Rev. Phys. Appl.
22
,
891
(
1987
).
60.
J.
Lagowski
,
D. G.
Lin
,
T.-P.
Chen
,
M.
Skowronski
, and
H. C.
Gatos
,
Appl. Phys. Lett.
47
,
929
(
1985
).
61.
G. M.
Martin
,
A.
Mitonneau
, and
A.
Mircea
,
Electron. Lett.
(
1977
).
62.
N. A.
Naz
,
U. S.
Qurashi
, and
M. Z.
Iqbal
,
J. Appl. Phys.
106
,
103704
(
2009
).
63.
H. J.
von Bardeleben
,
D.
Stiévenard
,
D.
Deresmes
,
A.
Huber
, and
J. C.
Bourgoin
,
Phys. Rev. B
34
,
7192
(
1986
).
64.
C. L.
Schilling
, “
Entwicklung Hochreflektierender Kontaktschichten für III-V-Konzentratorsolarzellen
,”
master thesis
(
Albert-Ludwigs-Universität
,
2017
).
You do not currently have access to this content.