The use of metal-organic frameworks (MOFs) in practical applications is often hindered by synthesis related challenges. Conventional solution-based approaches rely on hazardous solvents and often form powders that are difficult to integrate into practical devices. On the other hand, vapor-phase approaches generally result in MOF films on silicon substrates that make it difficult to characterize the MOF surface area, which is an important quality indicator. We address these challenges by introducing a solvent-free synthesis method to form MOF–fiber composites, which can be more easily integrated into devices. Additionally, these vapor-phase-formed MOF–fiber composites are compatible with Brunauer–Emmett–Teller surface area analysis to characterize MOF quality. Atomic layer deposition is used to form a ZnO film on polypropylene, polyester, and nylon fibrous substrates, which is subsequently converted to zeolitic imidazolate framework-8 (ZIF-8) using 2-methylimidazole vapor. We describe the effects of the ZnO film thickness and MOF conversion conditions on MOF crystallinity and surface area. We report a ZIF-8 surface area of ∼1300 m2/gMOF, which is comparable to reported surface areas of ∼1250–1600 m2/gMOF from conventional synthesis techniques, demonstrating good quality of the solvent-free MOF–fiber composites. We expect these results to extend vapor-phase MOF formation to new, practical substrates for advanced sensing and catalytic applications.

1.
H.
Furukawa
,
K. E.
Cordova
,
M.
O’Keeffe
, and
O. M.
Yaghi
,
Science
341
,
1455
(
2013
).
2.
I.
Stassen
,
N.
Burtch
,
A.
Talin
,
P.
Falcaro
,
M.
Allendorf
, and
R.
Ameloot
,
Chem. Soc. Rev.
46
,
3185
(
2017
).
3.
H. C.
Zhou
,
J. R.
Long
, and
O. M.
Yaghi
,
Chem. Rev.
112
,
673
(
2012
).
4.
G.
Lu
,
X.
Huang
,
Y.
Li
,
G.
Zhao
,
G.
Pang
, and
G.
Wang
,
J. Energy Chem.
43
, 8 (
2020
).
5.
C.
Sen Liu
,
J.
Li
, and
H.
Pang
,
Coord. Chem. Rev.
410
, 213222 (
2020
).
6.
S.
Shin
,
D. K.
Yoo
,
Y. S.
Bae
, and
S. H.
Jhung
,
Chem. Eng. J.
389
,
123429
(
2020
).
7.
8.
S.
Eslava
,
L.
Zhang
,
S.
Esconjauregui
,
J.
Yang
,
K.
Vanstreels
,
M. R.
Baklanov
, and
E.
Saiz
,
Chem. Mater.
25
,
27
(
2013
).
9.
S.
Mendiratta
,
M.
Usman
, and
K. L.
Lu
,
Coord. Chem. Rev.
360
,
77
(
2018
).
10.
P.
Horcajada
et al,
Nat. Mater.
9
,
172
(
2010
).
11.
D. T.
Lee
,
J. D.
Jamir
,
G. W.
Peterson
, and
G. N.
Parsons
,
Matter
2
, 404 (
2019
).
12.
H. F.
Barton
,
A. K.
Davis
, and
G. N.
Parsons
,
ACS Appl. Mater. Interfaces
12
,
14690
(
2020
).
13.
J.
Cravillon
,
C. A.
Schroder
,
H.
Bux
,
A.
Rothkirch
,
J.
Caro
, and
M.
Wiebcke
,
CrystEngComm
14
,
492
(
2012
).
14.
S. E.
Morgan
,
A. M.
O’Connell
,
A.
Jansson
,
G. W.
Peterson
,
J. J.
Mahle
,
T. B.
Eldred
,
W.
Gao
, and
G. N.
Parsons
,
ACS Appl. Mater. Interfaces
13
,
31279
(
2021
).
15.
K.
Ma
et al,
Chem. Mater.
32
, 7120 (
2020
).
16.
J.
Zhao
et al,
J. Mater. Chem. A Mater.
3
,
1458
(
2015
).
17.
J.
Zhao
et al,
Adv. Mater. Interfaces
1
,
1400040
(
2014
).
18.
D. T.
Lee
,
J.
Zhao
,
C. J.
Oldham
,
G. W.
Peterson
, and
G. N.
Parsons
,
ACS Appl. Mater. Interfaces
9
, 44847 (
2017
).
19.
G. N.
Parsons
et al,
Coord. Chem. Rev.
257
,
3323
(
2013
).
20.
G. N.
Parsons
,
Atomic Layer Deposition of Nanostructured Materials
(
Wiley
,
New York
, 2011), pp.
271
300
.
21.
P.
Su
,
M.
Tu
,
R.
Ameloot
, and
W.
Li
,
Acc. Chem. Res.
55
,
2
(
2022
).
22.
S. E.
Morgan
,
M. L.
Willis
,
G. W.
Peterson
,
J. J.
Mahle
, and
G. N.
Parsons
,
ACS Sustain Chem. Eng.
10
,
2699
(
2022
).
23.
S. E.
Morgan
,
M. L.
Willis
,
G.
Dianat
,
G. W.
Peterson
,
J. J.
Mahle
, and
G. N.
Parsons
,
ChemSusChem
16
,
e202201744
(
2023
).
24.
25.
J.
Bin Lin
,
R. B.
Lin
,
X. N.
Cheng
,
J. P.
Zhang
, and
X. M.
Chen
,
Chem. Commun.
47
,
9185
(
2011
).
26.
K. B.
Lausund
,
V.
Petrovic
, and
O.
Nilsen
,
Dalton Trans.
46
,
16983
(
2017
).
27.
K. B.
Lausund
and
O.
Nilsen
,
Nat. Commun.
7
,
010801
(
2016
).
28.
L. D.
Salmi
,
M. J.
Heikkilä
,
E.
Puukilainen
,
T.
Sajavaara
,
D.
Grosso
, and
M.
Ritala
,
Microporous Mesoporous Mater.
182
,
147
(
2013
).
29.
R. A.
Nye
,
A. P.
Kelliher
,
J. T.
Gaskins
,
P. E.
Hopkins
, and
G. N.
Parsons
,
Chem. Mater.
32
,
1553
(
2020
).
30.
A. J.
Cruz
,
G.
Arnauts
,
M.
Obst
,
D. E.
Kravchenko
,
P. M.
Vereecken
,
S.
De Feyter
,
I.
Stassen
,
T.
Hauffman
, and
R.
Ameloot
,
Dalton Trans.
50
,
6784
(
2021
).
31.
I.
Stassen
,
D.
De Vos
, and
R.
Ameloot
,
Chem. A Eur J.
22
,
14452
(
2016
).
32.
L.
Heinke
and
C.
Wöll
,
Adv. Mater.
31
,
1806324
(
2019
).
33.
J.
Smets
et al,
Chem. Mater.
35
, 1684 (
2022
).
34.
M. D.
Allendorf
,
A.
Schwartzberg
,
V.
Stavila
, and
A. A.
Talin
,
Chem. A Eur J.
17
,
11372
(
2011
).
35.
K. B.
Lausund
,
M. S.
Olsen
,
P. A.
Hansen
,
H.
Valen
, and
O.
Nilsen
,
J. Mater. Chem. A Mater.
8
,
2539
(
2020
).
36.
M.
Krishtab
,
I.
Stassen
,
T.
Stassin
,
A. J.
Cruz
,
O. O.
Okudur
,
S.
Armini
,
C.
Wilson
,
S.
De Gendt
, and
R.
Ameloot
,
Nat. Commun.
10
,
3729
(
2019
).
37.
C. T.
Lee
and
M. W.
Shin
,
Surfaces Interfaces
22
, 100845 (
2021
).
38.
H. N.
Abdelhamid
,
Macromol. Chem. Phys.
221
,
2000031
(
2020
).
39.
H.
Wang
,
Y.
Wang
,
A.
Jia
,
C.
Wang
,
L.
Wu
,
Y.
Yang
, and
Y.
Wang
,
Catal. Sci. Technol.
7
,
5572
(
2017
).
40.
M.
Drobek
,
J. H.
Kim
,
M.
Bechelany
,
C.
Vallicari
,
A.
Julbe
, and
S. S.
Kim
,
ACS Appl. Mater. Interfaces
8
,
8323
8328
(
2016
).
41.
F.
Tian
,
A. M.
Mosier
,
A.
Park
,
E. R.
Webster
,
A. M.
Cerro
,
R. S.
Shine
, and
L.
Benz
,
J. Phys. Chem. C
119
,
15248
(
2015
).
42.
A.
Ghasemi
,
M.
Shams
,
M.
Qasemi
, and
M.
Afsharnia
,
Data Brief
23
,
103783
(
2019
).
43.
S.
Yoon
,
J. J.
Calvo
, and
M. C.
So
,
Crystals
9
,
17
(
2019
).
44.
Q.
Peng
,
B.
Gong
,
R. M.
VanGundy
, and
G. N.
Parsons
,
Chem. Mater.
21
,
820
(
2009
).
45.
B.
Gong
,
Q.
Peng
, and
G. N.
Parsons
,
J. Phys. Chem. B
115
, 5930 (
2011
).
46.
K. S.
Walton
and
R. Q.
Snurr
,
J. Am. Chem. Soc.
129
,
8552
(
2007
).
47.
Y. R.
Lee
,
M. S.
Jang
,
H. Y.
Cho
,
H. J.
Kwon
,
S.
Kim
, and
W. S.
Ahn
,
Chem. Eng. J.
271
, 276 (
2015
).
48.
W.
Sun
,
X.
Zhai
, and
L.
Zhao
,
Chem. Eng. J.
289
, 59 (
2016
).
49.
J.
Rouquerol
,
P.
Llewellyn
, and
F.
Rouquerol
,
Stud. Surf. Sci. Catal.
160
, 1 (
2007
).
50.
J.
Marreiros
et al,
Angew. Chem. Int. Ed.
58
,
18471
(
2019
).
51.
A. H.
Brozena
,
C. J.
Oldham
, and
G. N.
Parsons
,
J. Vac. Sci. Technol. A
34
,
010801
(
2016
).
52.
G. N.
Parsons
and
R. D.
Clark
,
Chem. Mater.
32
,
4920
(
2020
).
53.
See the supplementary material online for additional SEM, XRD, and BET results for MOFs converted on fibers under various conditions. MOF pore width, SEM EDS images, FTIR, and TGA analysis are also provided in the supplementary material.

Supplementary Material

You do not currently have access to this content.