X-ray photoelectron spectroscopy is a major and valuable chemical analysis technique that can bring a wide range of information if one takes time to carefully interpret the spectra. In particular, many metrological developments deal with the modeling of photoelectron peaks while X-Auger transitions still remain hardly exploited. Here, an innovative approach examining these spectral features in a complementary way is presented and illustrated on a concrete case dealing with chemical changes of indium in the InSb semiconductor during its air aging. Indium contains an extensive range of photopeaks along the energy scale, meaning electrons emitted from different escape depths are present on the same widescan spectrum, and, thus, information from different depths is accessible. Specifically, this study focuses on indium’s X-Auger electron spectroscopy (X-AES) transitions and decomposition to track the outer surface chemistry evolution of the InSb semiconductor. To this end, we compared linear and nonlinear least-squares approaches to decompose In M4,5N4,5N4,5 X-AES transition and demonstrate oxide growth progression. For both approaches, we applied the vectorial method (also known as the informed amorphous sample model) to retrieve the different chemical environments present during air aging. Linear and nonlinear least-squares approaches were both found to yield comparable results, with a comparative error of less than 10%. Over time, a progressive growth of the oxide layer was demonstrated, ranging from 0.3 ± 0.2 to 2.9 ± 0.2 nm using the X-AES transitions. Additionally, decomposition of the In 3d and In 4d photoelectron peaks showed a lower thickness of oxide with time due to the lesser surface sensitivity of these peaks.

1.
M.
Bosi
and
C.
Pelosi
,
Prog. Photovolt. Res. Appl.
15
,
51
(
2007
).
3.
S.
Mokkapati
and
C.
Jagadish
,
Mater. Today
12
,
22
(
2009
).
4.
A.
Gocalinska
,
S.
Rubini
, and
E.
Pelucchi
,
Appl. Surf. Sci.
383
,
19
(
2016
).
5.
S. B.
Donald
,
Z. R.
Dai
,
M. L.
Davisson
,
J. R.
Jeffries
, and
A. J.
Nelson
,
J. Nucl. Mater.
487
,
105
(
2017
).
6.
G.
Bridoux
,
G. D.
Ruano
,
J. M.
Ferreyra
, and
M.
Villafuerte
,
J. Appl. Phys.
127
,
245704
(
2020
).
7.
S.
Béchu
,
M.
Bouttemy
,
J.
Guillemoles
, and
A.
Etcheberry
,
Appl. Surf. Sci.
576
,
151898
(
2022
).
9.
C. D.
Wagner
and
A.
Joshi
,
J. Electron Spectrosc. Relat. Phenom.
47
,
283
(
1988
).
10.
M.
Bedrouni
et al,
Opt. Mater.
111
,
110560
(
2021
).
11.
P.
Northover
,
A.
Crossley
,
C.
Grazioli
,
N.
Zema
,
S.
La Rosa
,
L.
Lozzi
,
P.
Picozzi
, and
E.
Paparazzo
,
Surf. Interface Anal.
40
,
464
(
2008
).
12.
N.
Nicoara
,
S.
Harel
,
T.
Lepetit
,
L.
Arzel
,
N.
Barreau
, and
S.
Sadewasser
,
ACS Appl. Energy Mater.
1
,
2681
(
2018
).
13.
S.
Harel
,
L.
Arzel
,
T.
Lepetit
,
P.
Zabierowski
, and
N.
Barreau
,
ACS Appl. Mater. Interfaces
12
,
46953
(
2020
).
14.
H.
Iwasaki
,
Y.
Mizokawa
,
R.
Nishitani
, and
S.
Nakamura
,
Surf. Sci.
86
,
811
(
1979
).
15.
M. C.
Biesinger
,
Surf. Interface Anal.
49
,
1325
(
2017
).
16.
J. J.
Moré
,
Numer. Anal.
630
,
105
(
1978
).
17.
N.
Fairley
et al,
Appl. Surf. Sci. Adv.
5
,
100112
(
2021
).
18.
G. H.
Golub
and
C.
Reinsch
,
Numer. Math.
14
,
403
(
1970
).
19.
B. M.
Garland
,
N.
Fairley
,
N. C.
Strandwitz
,
R.
Thorpe
,
P.
Bargiela
, and
J.
Baltrusaitis
,
Appl. Surf. Sci.
598
,
153827
(
2022
).
20.
R. A.
Gilbert
,
J. A.
Llewellyn
,
W. E.
Swartz
, and
J. W.
Palmer
,
Appl. Spectrosc.
36
,
428
(
1982
).
21.
M. F.
Koenig
and
J. T.
Grant
,
J. Electron Spectrosc. Relat. Phenom.
41
,
145
(
1986
).
22.
J.
Zhou
,
K.
Varazo
,
J. E.
Reddic
,
M. L.
Myrick
, and
D. A.
Chen
,
Anal. Chim. Acta
496
,
289
(
2003
).
23.
K.
Sakamoto
,
F.
Hayashi
,
K.
Sato
,
M.
Hirano
, and
N.
Ohtsu
,
Appl. Surf. Sci.
526
,
146729
(
2020
).
24.
J.
Baltrusaitis
,
B.
Mendoza-Sanchez
,
V.
Fernandez
,
R.
Veenstra
,
N.
Dukstiene
,
A.
Roberts
, and
N.
Fairley
,
Appl. Surf. Sci.
326
,
151
(
2015
).
25.
S.
Béchu
,
B.
Humbert
,
V.
Fernandez
,
N.
Fairley
, and
M.
Richard-Plouet
,
Appl. Surf. Sci.
447
,
528
(
2018
).
26.
G.
Greczynski
and
L.
Hultman
,
Prog. Mater. Sci.
107
,
100591
(
2020
).
27.
A. V.
Naumkin
,
A.
Kraut-Vass
,
S. W.
Gaarenstroom
, and
C. J.
Powell
, NIST X-ray Photoelectron Spectroscopy Database, Version 5.0, last updated 2023, see https://dx.doi.org/10.18434/T4T88K.
28.
T. A.
Carlson
and
G. E.
McGuire
,
J. Electron Spectrosc. Relat. Phenom.
1
,
161
(
1972
).
29.
B. R.
Strohmeier
,
Surf. Interface Anal.
15
,
51
(
1990
).
30.
W. K.
Liu
and
M. B.
Santos
,
J. Vac. Sci. Technol. B
14
,
647
(
1996
).
31.
S.
Béchu
,
A.
Loubat
,
M.
Bouttemy
,
J.
Vigneron
,
J.-L.
Gentner
, and
A.
Etcheberry
,
Thin Solid Films
669
,
425
(
2019
).
32.
X.
Tang
,
R. G.
Van Welzenis
,
F. M.
Van Setten
, and
A. J.
Bosch
,
Semicond. Sci. Technol.
1
,
355
(
1986
).
33.
See the supplementary material online for the comparison of the In2O3 experimental X-AES spectrum and the In2O3 vector obtained by the vectorial method; the table of parameters decomposition for the X-AES nonlinear least square decomposition; the curves fitted to data of the Sb 3d–O 1s region and the C 1s photopeak at t0; the evolution of the In M4,5N4,5N4,5 transitions for InSb using nonlinear least square decomposition for 30 min, 1 h, 3 h, and 4 h; the parameter fits for the In 3d5/2 photopeak during air aging; the atomic percentages during air aging calculated from the C 1s, In 3d5/2, Sb 3d5/2, and O 1s photopeaks; the parameter fits for the In 4d5/2 photopeak during air aging; the parameter fits for the Sb 3d5/2 photopeak during air aging; and the parameter fits for the Sb 4d5/2 photopeak during air aging.

Supplementary Material

You do not currently have access to this content.