For studying the damage tolerance of thin films, a novel randomly distributed nano-scratch test method was introduced and demonstrated as a promising characterization method. It is capable of more closely simulating the damage progression in abrasion, where material removal can be influenced by the interaction between damage produced by previous scratches in close proximity. In addition to studying how localized failure events affect subsequent damage progression, it is possible to monitor the evolution of the film degradation cycle-by-cycle using the mean depth and friction over the scratch. Randomly distributed nano-scratch tests were performed on the high entropy alloy AlFeMnNb, AlFeMnNi, and nanocomposite (nc-) TiN/Si3N4 thin films on silicon. Brittle fracture and film removal with extensive chipping of the Si substrate were observed over the entire scratched region on AlFeMnNi and nc-TiN/Si3N4 in distributed scratch tests at applied loads that were only ∼0.2–0.3 of the load needed to produce the chipping in ramped load nano-scratch tests due to film and substrate fatigue. In contrast, the softer AlFeMnNb deformed predominantly by ductile ploughing with significantly improved damage tolerance and crack resistance in the distributed scratch tests. The new method can be used to evaluate the performance of thin films in applications where they can be exposed to abrasive/sliding wear. It can provide a more direct measure of abrasion resistance than assuming high resistance to abrasive wear from coating hardness. In the thin film systems studied, higher hardness was associated with greater fracture and delamination in the distributed scratch tests.

1.
K.
Hokkirigawa
and
K.
Kato
,
Tribol. Int.
21
,
51
(
1988
).
2.
3.
Y.
Xie
and
H. M.
Hawthorne
,
Wear
233-235
,
293
(
1999
).
5.
M. A.
Masen
,
M. B.
de Rooji
, and
D. J.
Schipper
,
Wear
258
,
339
(
2005
).
6.
W. M.
da Silva
and
J. D. B.
de Mello
,
Wear
267
,
1987
(
2009
).
7.
R. L.
Kobrick
,
D. M.
Klaus
, and
K. W.
Street
, Jr.
,
Wear
270
,
650
(
2011
).
8.
R. L.
Kobrick
,
D. M.
Klaus
, and
K. W.
Street
, Jr.
,
Wear
270
,
815
(
2011
).
9.
C.
Pignie
,
M. G.
Gee
,
J. W.
Nunn
,
H.
Jones
, and
A. J.
Gant
,
Wear
302
,
1050
(
2013
).
10.
M.
Woldman
,
E.
Van Der Heide
,
T.
Tinga
, and
M. A.
Masen
,
Wear
310
,
76
(
2013
).
11.
A. J.
Gant
,
J. W.
Nunn
,
M. G.
Gee
,
D.
Gorman
,
D. D.
Gohil
, and
L. P.
Orkney
,
Wear
376-377
,
2
(
2017
).
12.
M. G.
Gee
,
A.
Gant
, and
B.
Roebuck
,
Wear
263
,
137
(
2007
).
13.
B. D.
Beake
,
Surf. Coat. Technol.
442
,
128272
(
2022
).
14.
S. J.
Bull
and
D. S.
Rickerby
,
Thin Solid Films
181
,
545
(
1989
).
15.
J.
von Stebut
,
Surf. Coat. Technol.
200
,
346
(
2005
).
16.
B.
Shi
,
J. L.
Sullivan
, and
B. D.
Beake
,
J. Phys. D: Appl. Phys.
41
,
045303
(
2008
).
17.
W.
Gu
,
Z.
Yao
, and
X.
Liang
,
Wear
270
,
241
(
2011
).
18.
M. G.
Gee
,
K.
Mingard
,
J.
Nunn
,
B.
Roebuck
, and
A.
Gant
,
Int. J. Refract. Met. Hard Mater.
62
,
192
(
2017
).
19.
H. Q.
Sun
,
R.
Irwan
,
H.
Huang
, and
G. W.
Stachowiak
,
Wear
268
,
1400
(
2010
).
20.
N.
Rajendhran
,
P.
De Baets
,
S.
Huang
,
J.
Vleugels
, and
J.
Sukumaran
,
Wear
476
,
203689
(
2021
).
21.
M. A.
Tunes
and
V. M.
Vishnyakov
,
Mater. Des.
170
,
107692
(
2019
).
22.
M. A.
Tunes
,
V. M.
Vishnyakov
, and
S. E.
Donnelly
,
Thin Solid Films
649
,
115
(
2018
).
23.
W.
Muftah
,
J.
Allport
, and
V. M.
Vishnyakov
,
Surf. Coat. Technol.
422
,
127486
(
2021
).
24.
W.
Muftah
,
N.
Patmore
, and
V. M.
Vishnyakov
,
Mater. Sci. Technol.
36
,
1301
(
2020
).
25.
B. D.
Beake
,
V. M.
Vishnyakov
,
R.
Valizadeh
, and
J. S.
Colligon
,
J. Phys. D: Appl. Phys.
39
,
1392
(
2006
).
26.
J. S.
Colligon
,
V. M.
Vishnyakov
,
R.
Valizadeh
,
S. E.
Donnelly
, and
S.
Kumashiro
,
Thin Solid Films
485
,
148
(
2005
).
27.
ISO 14577
, Parts 1–4, Metallic materials—Instrumented indentation test for hardness and materials parameters.
28.
CEN/TS
, 17629:2021 Nanotechnologies—Nano- and micro- scale scratch testing (2021).
29.
T. Y.
Tsui
,
G. M.
Pharr
,
W. C.
Oliver
,
C. S.
Bhatia
,
R. L.
White
,
S.
Anders
,
A.
Anders
, and
I. G.
Brown
,
Mater. Res. Soc. Symp. Proc.
383
,
447
(
1995
).
30.
K. L.
Johnson
,
Contact Mechanics
(
Cambridge University
,
London
,
1985
), p.
464
. ISBN: 0-521-34796-3.
31.
A.
Clausner
and
F.
Richter
,
Eur. J. Mech. A/Solids
51
,
11
(
2015
).
32.
N.
Schwarzer
, personal communication (June 10, 2008).
33.
B. D.
Beake
,
V. M.
Vishnyakov
, and
A. J.
Harris
,
Surf. Coat. Technol.
309
,
671
(
2017
).
34.
B. D.
Beake
,
S. J.
McMaster
, and
T. W.
Liskiewicz
,
Appl. Surf. Sci. Adv
9
,
100248
(
2022
).
35.
B. D.
Beake
,
J. L.
Endrino
,
C.
Kimpton
,
G. S.
Fox-Rabinovich
, and
S. C.
Veldhuis
,
Int. J. Refract. Met. Hard Mater.
69
,
215
(
2017
).
36.
B. D.
Beake
,
S. J.
McMaster
,
T. W.
Liskiewicz
, and
A.
Neville
,
Tribol. Int.
160
,
107063
(
2021
).
37.
F. P.
Bowden
and
D.
Tabor
,
The Friction and Lubrication of Solids
(
Oxford Clarendon
, Oxford, UK,
1986
).
38.
M.
Zou
, in
Micro- and Nanoscale Phenomena in Tribology
, edited by
Y.-W.
Chung
(
CRC
,
Boca Raton
,
2012
), pp.
103
152
.
39.
X.-G.
Ma
,
K.
Komvopoulos
,
D.
Wan
,
D. B.
Bogy
, and
Y.-S.
Kim
,
Wear
254
,
1010
(
2003
).
40.
C. A.
Charitidis
,
Int. J. Refract. Met. Hard Mater.
28
,
51
(
2010
).
41.
K.
Meine
,
T.
Schneider
,
D.
Spaltmann
, and
E.
Santner
,
Wear
253
,
725
(
2002
).
42.
K.
Meine
,
T.
Schneider
,
D.
Spaltmann
, and
E.
Santner
,
Wear
253
,
733
(
2002
).
43.
E.
Santner
,
D.
Klaffke
,
K.
Meine
,
C.
Polaczyk
, and
D.
Spaltmann
,
Tribol. Int.
39
,
450
(
2006
).
44.
E.
Santner
,
D.
Klaffke
,
K.
Meine
,
C.
Polaczyk
, and
D.
Spaltmann
,
Wear
261
,
101
(
2006
).
You do not currently have access to this content.