Due to its different polymorphs, including vanadium pentoxide (V2O5) and vanadium dioxide (VO2), the vanadium oxide (VOX) compound is an immensely interesting material with many important applications. While atomic layer deposition (ALD) is among the possible VOX film synthesis methods, literature reports have majorly utilized thermal-ALD, which reveals as-grown amorphous VOX films. Further post-deposition annealing process is needed to crystallize these films. High-temperature crystallization indeed limits the use of low-temperature compatible materials, processes, and substrates. In this work, we report on the low-temperature crystalline VOX film growth in a hollow-cathode plasma-enhanced atomic layer deposition reactor using two different vanadium precursors, tetrakis(ethylmethylamino)vanadium and vanadium(V) oxytriisopropoxide. Oxygen plasmas were used as co-reactants at a substrate temperature of 150 °C. Along with the purpose of investing in the impact of metal precursors on VOX film growth, we also studied Ar-plasma in situ and thermal ex situ annealing to investigate possible structural enhancement and phase transformation. In situ Ar-plasma annealing was performed with 20 s, 20 SCCM Ar-plasma, while post-deposition ex situ annealing was carried out at 500 °C and 0.5 mTorr O2 pressure. In situ ellipsometry was performed to record instant film thickness variation and several ex situ characterizations were performed to extract the optical, structural, and electrical properties of the films. The outcomes of the study confirm that both metal precursors result in as-grown crystalline V2O5 films at 150 °C. On the other hand, post-deposition annealing converted the as-grown crystalline V2O5 film to VO2 film. Finally, we have also successfully confirmed the metal-to-insulator transition property of the annealed VO2 films via temperature-dependent structural and electrical measurements.

2.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
3.
Z.
Chen
,
H.
Wang
,
X.
Wang
,
P.
Chen
,
Y.
Liu
,
H.
Zhao
,
Y.
Zhao
, and
Y.
Duan
,
Sci. Rep.
7
,
40061
(
2017
).
4.
M.
Alevli
,
C.
Ozgit
,
I.
Donmez
, and
N.
Biyikli
,
J. Cryst. Growth
335
,
51
(
2011
).
5.
M.
Alevli
,
C.
Ozgit
,
I.
Donmez
, and
N.
Biyikli
,
Phys. Status Solidi A
209
,
266
(
2012
).
6.
C.
Ozgit-Akgun
,
E.
Goldenberg
,
A. K.
Okyay
, and
N.
Biyikli
,
J. Mater. Chem. C
2
,
2123
(
2014
).
7.
J.
Sheng
,
J.
Park
,
D. W.
Choi
,
J.
Lim
, and
J. S.
Park
,
ACS Appl. Mater. Interfaces
8
,
31136
(
2016
).
8.
H. Y.
Shih
,
W. H.
Lee
,
W. C.
Kao
,
Y. C.
Chuang
,
R. M.
Lin
,
H. C.
Lin
,
M.
Shiojiri
, and
M. J.
Chen
,
Sci. Rep.
7
,
39717
(
2017
).
9.
M.
Fang
,
H.
Zhang
,
L.
Sang
,
H.
Cao
,
L.
Yang
,
K.
Ostrikov
,
I.
Levchenko
, and
Q.
Chen
,
Flex. Print. Electron.
2
,
022001
(
2017
).
10.
A.
Mohammad
,
S.
Ilhom
,
D.
Shukla
, and
N.
Biyikli
,
J. Vac. Sci. Technol., A
40
,
042401
(
2022
).
11.
Y. S.
Jung
,
P.
Lu
,
A. S.
Cavanagh
,
C.
Ban
,
G.-H.
Kim
,
S.-H.
Lee
,
S. M.
George
,
S. J.
Harris
, and
A. C.
Dillon
,
Adv. Energy Mater.
3
,
213
(
2013
).
12.
M.
Xie
,
X.
Sun
,
C.
Zhou
,
A. S.
Cavanagh
,
H.
Sun
,
T.
Hu
,
G.
Wang
,
J.
Lian
, and
S. M.
George
,
J. Electrochem. Soc.
162
,
A974
(
2015
).
13.
J.
Schmidt
,
A.
Merkle
,
R.
Brendel
,
B.
Hoex
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Prog. Photovolt. Res. Appl.
16
,
461
(
2008
).
14.
J. A.
van Delft
,
D.
Garcia-Alonso
, and
W. M. M.
Kessels
,
Semicond. Sci. Technol.
27
,
074002
(
2012
).
15.
A.
Richter
,
J.
Benick
,
M.
Hermle
, and
S. W.
Glunz
,
Phys.Status Solidi RRL
5
,
202
(
2011
).
16.
A.
Mohammad
,
D.
Shukla
,
S.
Ilhom
,
B.
Willis
,
B.
Johs
,
A. K.
Okyay
, and
N.
Biyikli
,
J. Vac. Sci. Technol., A
37
,
020927
(
2019
).
17.
M. A.
Khalily
,
H.
Eren
,
S.
Akbayrak
,
H. H.
Susapto
,
N.
Biyikli
,
S.
Özkar
, and
M. O.
Guler
,
Angew. Chem., Int. Ed.
55
,
12257
(
2016
).
18.
J.
Lu
,
J. W.
Elam
, and
P. C.
Stair
,
Acc. Chem. Res.
46
,
1806
(
2013
).
19.
B. J.
O’Neill
et al,
ACS Catal.
5
,
1804
(
2015
).
20.
J.
Sheng
,
K.-L.
Han
,
T. H.
Hong
,
W.-H.
Choi
, and
J.-S.
Park
,
J. Semicond.
39
,
011008
(
2018
).
21.
A.
Mohammad
,
D.
Shukla
,
S.
Ilhom
,
B.
Willis
,
A. K.
Okyay
, and
N.
Biyikli
,
Int. J. High Speed Electron. Syst.
28
,
1940020
(
2019
).
22.
B. J.
Kim
et al,
Energy Environ. Sci.
8
,
916
(
2015
).
23.
K.
Schneider
,
M.
Lubecka
, and
A.
Czapla
,
Sens. Actuators, B
236
,
970
(
2016
).
24.
D. C.
Bocka
,
A. C.
Marschiloka
,
K. J.
Takeuchia
, and
E.
Takeuchia
,
Electrochim. Acta
73
,
1
(
2012
).
25.
Y.
Zhang
,
J.
Zheng
,
Y.
Zhao
,
T.
Hu
,
Z.
Gao
, and
C.
Meng
,
Appl. Surf. Sci.
377
,
385
(
2016
).
26.
27.
Q.
Meng
,
K.
Cai
,
Y.
Chen
, and
L.
Chen
,
Nano Energy
36
,
268
(
2017
).
28.
J.
Yang
,
T.
Lan
,
J.
Liu
,
Y.
Song
, and
M.
Wei
,
Electrochim. Acta
105
,
489
(
2013
).
29.
S. D.
Perera
,
B.
Patel
,
J.
Bonso
,
M.
Grunewald
,
J. P.
Ferraris
, and
K. J.
Balkus
,
ACS Appl. Mater. Interfaces
3
,
4512
(
2011
).
30.
M.
Tian
,
R.
Li
,
C.
Liu
,
D.
Long
, and
G.
Cao
,
ACS Appl. Mater. Interfaces
11
,
15573
(
2019
).
31.
D. T.
Gillaspie
,
R. C.
Tenent
, and
A. C.
Dillon
,
J. Mater. Chem.
20
,
9585
(
2010
).
32.
M.
Panagopoulou
,
D.
Vernardou
,
E.
Koudoumas
,
N.
Katsarakis
,
D.
Tsoukalas
, and
Y. S.
Raptis
,
J. Phys. Chem. C
121
,
70
(
2017
).
33.
A. M.
Andersson
,
C. G.
Granqvist
, and
J. R.
Stevens
,
Appl. Opt.
28
,
3295
(
1989
).
34.
L. A.
Gea
and
L. A.
Boatner
,
Appl. Phys. Lett.
68
,
3081
(
1996
).
35.
G.
Stefanovich
,
A.
Pergament
, and
D.
Stefanovich
,
J. Phys.: Condens. Matter
12
,
8837
(
2000
).
37.
T.
Driscoll
et al,
Appl. Phys. Lett.
93
,
024101
(
2008
).
38.
C. G.
Granqvist
,
P. C.
Lansåker
,
N. R.
Mlyuka
,
G. A.
Niklasson
, and
E.
Avendaño
,
Sol. Energy Mater. Sol. Cells
93
,
2032
(
2009
).
39.
C. G.
Granqvist
,
S.
Green
,
G. A.
Niklasson
,
N. R.
Mlyuka
,
S. V.
Kramer
, and
P.
Georén
,
Thin Solid Films
518
,
3046
(
2010
).
40.
T.
Blanquart
et al,
RCS Adv.
3
,
1179
(
2013
).
41.
G. Y.
Song
,
C.
Oh
,
S.
Sinha
,
J.
Son
, and
J.
Heo
,
ACS Appl. Mater. Interfaces
9
,
23909
(
2017
).
42.
A.
Özçelik
,
Turkish J. Electromec. Energy
4
,
13
(
2019
), available at https://scienceliterature.com/index.php/TJOEE/article/view/146/pdf_20.
43.
J.
Musschoot
,
D.
Deduytsche
,
H.
Poelman
,
J.
Haemers
,
R. L.
Van Meirhaeghe
,
S.
Van den Berghe
, and
C.
Detavernier
,
J. Electrochem. Soc.
156
,
P122
(
2009
).
44.
I. I.
Kazadojev
,
Growth of V2O5 Films for Electrochromic and Battery Applications
(
The National University of Ireland
,
Cork
,
2018
).
45.
A.
Mohammad
,
K. D.
Joshi
,
D.
Rana
,
S.
Ilhom
,
B.
Wells
,
B.
Willis
,
B.
Sinkovic
,
A. K.
Okyay
, and
N.
Biyikli
,
J. Vac. Sci. Technol. A
41
,
032405
(
2023
).
46.
S.
Ilhom
,
D.
Shukla
,
A.
Mohammad
,
J.
Grasso
,
B.
Willis
, and
N.
Biyikli
,
J. Vac. Sci. Technol., A
38
,
022405
(
2020
).
47.
S.
Ilhom
,
A.
Mohammad
,
D.
Shukla
,
J.
Grasso
,
B. G.
Willis
,
A. K.
Okyay
, and
N.
Biyikli
,
RSC Adv.
10
,
27357
(
2020
).
48.
D.
Shukla
,
A.
Mohammad
,
S.
Ilhom
,
B. G.
Willis
,
A. K.
Okyay
, and
N.
Biyikli
,
J. Vac. Sci. Technol., A
39
,
022406
(
2021
).
49.
L.
Adnane
,
A.
Gokirmak
, and
H.
Silva
,
Rev. Sci. Instrum.
87
,
075117
(
2016
).
50.
H.
Jung
et al,
ACS Appl. Mater. Interfaces
10
,
40286
(
2018
).
51.
D. R.
Boris
,
V. D.
Wheeler
,
N.
Nepal
,
S. B.
Qadri
,
S. G.
Walton
, and
C. R.
Eddy
,
J. Vac. Sci. Technol., A
38
,
040801
(
2020
).
52.
R. W.
Johnson
,
A.
Hultqvist
, and
S. F.
Bent
,
Mater. Today
17
,
236
(
2014
).
53.
M.
Shahmohammadi
,
R.
Mukherjee
,
C.
Sukotjo
,
U. M.
Diwekar
, and
C. G.
Takoudis
,
Nanomaterials
12
,
831
(
2022
).
54.
S.
Ilhom
,
A.
Mohammad
,
D.
Shukla
,
J.
Grasso
,
B. G.
Willis
,
A. K.
Okyay
, and
N.
Biyikli
,
ACS Appl. Mater. Interfaces
13
,
8538
(
2021
).
55.
T. J.
Chang
,
W. H.
Lee
,
C. I.
Wang
,
S. H.
Yi
,
Y. T.
Yin
,
H. C.
Lin
, and
M. J.
Chen
,
ACS Appl. Electron. Mater.
1
,
1091
(
2019
).
56.
57.
Q.
Shi
,
W.
Huang
,
J.
Yan
,
Y.
Zhang
,
M.
Mao
,
Y.
Zhang
,
Y.
Xu
, and
Y.
Zhang
,
J. Sol-Gel Sci. Technol.
59
,
591
(
2011
).
58.
S. H.
Lee
,
P.
Liu
, and
C. E.
Tracy
,
Electrochem. Solid-State Lett.
6
,
A275
(
2003
).
59.
W. C.
Kao
,
W. H.
Lee
,
S. H.
Yi
,
T. H.
Shen
,
H. C. L.
and M
, and
J.
Chen
,
RSC Adv.
9
,
12226
(
2019
).
60.
Z.
Tarnawski
,
K.
Zakrzewska
,
N. T. H.
Kim-Ngan
,
M.
Krupska
,
S.
Sowa
,
K.
Drogowska
,
L.
Havela
, and
A. G.
Balogh
,
Acta Phys. Pol. A
128
,
431
(
2015
).
61.
K.
Zhang
,
M.
Tangirala
,
D.
Nminibapiel
,
W.
Cao
,
V.
Pallem
,
C.
Dussarrat
, and
H.
Baumgart
,
ECS Trans.
50
,
175
(
2013
).
62.
G.
Rampelberg
,
M.
Schaekers
,
K.
Martens
,
Q.
Xie
,
D.
Deduytsche
,
B. D.
Schutter
,
N.
Blasco
,
J.
Kittl
, and
C.
Detavernier
,
Appl. Phys. Lett.
98
,
162902
(
2011
).
63.
See supplementary material online for additional in situ characterizations, ex situ characterizations, reactor schematic diagram, and experimental information.

Supplementary Material

You do not currently have access to this content.